EMEP Report 1/2009 Date: July 2009

METEOROLOGISK INSTITUTT Norwegian Meteorological Institute

Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe in 2007

	Anna Benedictow, Hilde Fagerli, Michael Gauss, Jan Fiof Jonson
EMEP/MSC-W:	Ágnes Nyíri, David Simpson,
	Svetlana Tsyro, Alvaro Valdebenito,
	Semeena Valiyaveetil S. and Peter Wind
EMEP/CCC:	Wenche Aas and Anne-Gunn Hjelbrekke
EMEP/CEIP:	Katarina Mareckova and Robert Wankmüller
ICP vegetation:	Harry Harmens
	David Cooper, David Norris,
University of Vechta:	Winfried Schröder, Roland Pesch
-	and Marcel Holy

EMEP Status Report 2009; July 16, 2009

ISSN 1504-6109 (print) ISSN 1504-6192 (on-line)

Executive Summary

This report has been prepared for the thirty-third session of the Steering Body to EMEP. It presents the progress of activities on acidification, eutrophication and ground level ozone within EMEP during 2008-2009. The status of transboundary depositions in Europe in 2007 is presented and main features with respect to other years are discussed. The main focus in this year's report is on source-receptor relationships, regarding trends, emission sector contributions and the effect of the meteorological driver and resolution on the calculation of blame matrices.

Main issues on transboundary air pollution in Europe in 2007

The changes in the total antrophogenic emissions of main pollutants within the extended EMEP area from 2006 to 2007 were generally small, with averaged reductions of -2.6% for SO_x , -0.1% for NH_3 , -6.4% for NMVOCs, while for NO_x there was an increase of 1%. However, individual countries have reported much larger changes. In general, changes in air concentrations and depositions from year to year are driven by changes in emissions and by meteorological variability. For most countries, the reported change in emissions was smaller than the meteorological variability, and the changes in concentrations and depositions from 2006 to 2007 are to a large extent driven by meteorological variability.

The high temperatures in January 2007 together with large amounts of precipitation in central and eastern Europe and western Russia resulted in rather low particulate matter values for the same area. By contrast, in March, high particulate matter values were observed in central Europe related to dry conditions. For ozone, the levels in 2007 compared to 2006 were lower in central Europe and northern Europe, and the summer ozone levels of 2007 were among the lowest in the past decade. However, during the heat wave period over south eastern Europe in July the ozone air pollution was more severe than in the same period in 2006.

A direct comparison of the source-receptor calculations for 2007 with those made for earlier years is not straightforward as the meteorological driver for the Unified EMEP model has been changed from PARLAM-PS to HIRLAM. Selected sourcereceptor relationships were recalculated for 2006 with the same meteorological driver as is used for 2007. These results show that for some countries the source-receptor calculations for 2007 differ greatly from those for 2006. In particular, the high amount of precipitation over the North Sea areas has likely contributed to the pronounced reduction in imported nitrogen and sulphur deposited in Scandinavia in 2007.

EECCA countries: status and developments

The reporting of emission inventories by EECCA countries to the Convention is rather limited. In recent years only Belarus, Moldova, Russian Federation and Ukraine reported (more or less regularly) emission inventories to the Convention. Georgia has submitted inventories of main pollutants in 2008 and 2009, Kyrgyzstan provided main pollutant emissions from stationary sources (except NH₃), and Azerbaijan submitted some information on emissions for stationary sources in 2009. No data have been provided by Armenia and Kazakhstan. In general the reported inventories are not complete, and informative inventory reports are not provided. No consistent sets of historical data have been reported by these countries. The Russian Federation reports emissions only for "EMEP Russia", but not for the whole country or the extended EMEP area.

At present, the number of monitoring stations in EECCA countries is limited, but efforts are underway to improve this. Russia and Belarus are the only EECCA countries that have had regular monitoring in EMEP for several years. However, the measurement program is far from complete. During the last couple of years, EMEP level 1 sites have been established in Kazakhstan, Moldova, Armenia and Georgia with external support. Furthermore, Ukraine has for several years planned to establish a site as a contribution in kind to UNECE. However, so far very little data has been reported to CCC from these new sites. Some preliminary results from Moldova, Georgia and Armenia have been submitted, and it is expected that these three sites will report 2008 data at the official reporting deadline this year. It is evident that further training, especially in laboratory practice, is needed for those new EMEP sites to improve the data quality and reporting, and a training course especially devoted to these laboratories is planned for the winter 2009/2010.

Concerning the modelling capabilities of EMEP, calculations on the origin of transboundary air pollution to EECCA countries for all 12 EECCA countries are for the first time this year presented with exactly the same methodology as for the other countries. In order to achieve this, the meteorological model used to drive the Unified EMEP model has been changed from PARLAM-PS to HIRLAM (with an extended EMEP domain). The Russian Federation is still not fully covered by the EMEP calculations, but efforts are underway to extend the EMEP domain even further. It should be noted that there are large uncertainties associated with the model results in EECCA countries, primarily associated with the emission and critical load data. Especially for those countries and areas which were first included in the modelling last year, there is very little background information available on emission sources.

Trends and variability in source-receptor relationships

In order to have a consistent set of country-to-country blame matrices that makes a trend study possible, source-receptor calculations for 10 years (1997-2006) have been performed this year. The same model version and meteorological driver have been used in all the calculations. A long term series of meteorological data for the extended EMEP domain was not accessible, thus these results are only available for the 'old' EMEP domain.

In general, over the whole of Europe, the trends in total deposition of sulphur, oxidized and reduced nitrogen follow the emission trend. However, due to transboundary contributions and some non-linearities, this is less true for individual countries.

The main contributors to deposition of sulphur for countries like Armenia, Belarus, Denmark and Latvia are transboundary fluxes. Even though these countries have reduced their emissions considerably over the years, the depositions resulting from the emissions of their largest contributors remain at an almost constant level, and thus the total deposition in these countries has not decreased much over the years. Oxidized nitrogen deposition shows similar trends to those of sulphur, but with weaker signals (since the emission reductions for NO_x are relatively small compared to those of SO_x). The deposition trends of reduced nitrogen follow the emission for most countries. This is due to the faster deposition rate of reduced nitrogen, which causes larger indigenous contributions to deposition, and thus the country's own emission trends are reflected.

The largest contributors to deposition of sulphur and oxidized nitrogen over sea areas are land sources, where emissions decreased over the years. However, SO_x and NO_x emissions (and hence depositions) from ship traffic have increased over the years. These two trends counterbalance each other to a large extent, and therefore the total deposition of SO_x and oxidized nitrogen to sea areas has remained almost constant over these ten years.

The interannual variations in transboundary contributions is about 10-30% and the variability is largest for smaller countries. This is slightly higher than the interannual variability caused by meteorology alone (10-20%). The interannual variability in transboundary contributions to depositions was found to be larger for sulphur than for oxidized and reduced nitrogen. This is due to the larger emission reduction in the case of SO_x (-28%) than those compared to NO_x (-7%) and NH_3 (-8%) over the 10 years of this study.

Contributions from different emission sectors to depositions and air concentrations

Traditionally the source-receptor relationships are calculated applying the same percentage reductions for all emission sectors in a given country. This year, the 2006 'traditional' source-receptor matrices are accompanied by source-receptor matrices per emission sector.

Stationary combustion sources are shown to be the dominant source of oxidised sulphur deposition, both indigenous and transboundary. They also contribute significantly to the deposition of oxidised nitrogen in a number of countries and to the concentrations of secondary inorganic aerosols (SIA) and $PM_{2.5}$. Emissions from road traffic and other mobile sources (including shipping) make the largest contribution to the deposition of oxidised nitrogen and have the largest effect on ozone formation. They also make a significant (though not the major) contribution to SIA and $PM_{2.5}$ concentrations. Ammonia emissions from agriculture are a prerequisite for the formation of ammonium nitrate. They are the major source of reduced nitrogen depositions and an important source of SIA in many countries. In general, the contributions from agriculture (NH₃) to SIA concentrations are larger compared to other sources when considering only the sources from the country itself because of the higher long range transport potential of NO_x and SO_x.

Impact of resolution and the meteorological driver on source-receptor relationships

As a part of an uncertainty analysis of country-to-country blame matrices, this report presents an evaluation of the effect of using different meteorological drivers for the Unified EMEP model as well as a preliminary analysis of the effect of model resolution on source-receptor relationships.

The evaluation of the effect of the meteorological driver was based on data from three different numerical weather prediction models for 2006; PARLAM-PS, ECMWF and HIRLAM. The relative uncertainty was found to be larger for the small contributions from one country to another, while the results for the large contributions, both in terms of export and import of pollutants, are rather robust. In general, the uncertainty due to the meteorological driver is smaller or comparable in magnitude to the changes related to interannual variability in meteorology. Therefore, trend studies should be based on model runs that use the same numerical weather prediction model input.

A preliminary analysis shows that increasing the resolution of the Unified EMEP model (excluding the effect of changing the resolution of emissions) from 50 km to 25 km has only a minor impact on the results, at least for the largest contributions from one country to another. So far, the analysis has only been done for SO_x , $PPM_{2.5}$ and PPM_{co} , and this conclusion might change for components for which chemical non-linearities are important (e.g. O_3 and NO_x). In general, the effect of resolution on source-receptor calculations is significantly smaller than the effect of using different

meteorological drivers or of meteorological variability.

The effect of improving the resolution of emissions could not be judged directly from this study as the aggregated fine scale emission (to 50 km) does not equal the EMEP 50 km emissions. Obviously, a different spatial distribution of emissions (as in the two emission data sets used in this study) can lead to large differences in the calculated contributions from one country to another.

Acknowledgments

The results presented here benefit largely from the work carried out under the four EMEP Task Forces and in particular under the Task Force on Measurements and Modelling.

The Working Group on Effects and its ICPs and Task Forces are gratefully acknowledged for their assistance in determining the risk of damage from air pollution. As in previous years, the Coordination Center for Effects (CCE) and Jean Paul Hettelingh have provided us with the latest information data on critical loads.

Special thanks are due to Maximilian Posch for helping in the calculation of exceedances to critical loads and providing data on land use to support model calculations with finer scale resolution. Special thanks are also due to Hugo Denier van der Gon for granting permission to use the finer scale information on the spatial distribution of emissions as developed by TNO Built Environment and Geoscience under the GEMS project.

We thank the following persons for contributing data on the nitrogen concentration in mosses for the 2005/6 European survey: Renate Alber (Italy - Bolzano region), Mahmut Cokun (Turkey), Ludwig De Temmerman (Belgium), José Angel Fernández Escribano (Spain - Galicia), Marina Frolova (Latvia), Zvonka Jeran (Slovenia), Eero Kubin (Finland), Sébastien Leblond (France), Siiri Liiv (Estonia), Blanka Maňkovská (Slovakia), Jesús Santamaría (Spain - Navarra), Ivan Suchara (Czech Republic), Lotti Thöni (Switzerland), Lilyana Yurukova (Bulgaria), Harald G. Zechmeister (Austria).

This work has been funded by the EMEP Trust Fund and it is a free contribution to the ACCENT Network of Excellence. The development of the EMEP Unified model has also been partly supported by the EU 6FP projects, NitroEurope and EU-CAARI. This work has also received support from the Research Council of Norway (Programme for Supercomputing) through computing time granted at the IBM p575+ computer at the Norwegian University of Science and Technology (NTNU) in Trondheim and at the HP rx4640 computer at the University of Tromsø, Norway.

Contents

1	Intr	oduction	1
	1.1	Purpose and structure of this report	1
	1.2	Definitions, statistics used	3
	1.3	The EMEP extended domain	6
	1.4	Country Codes	7
	1.5	Other Publications	8
	Refe	rences	14
Ι	Sta	tus in 2007	17
2	Stat	us of transboundary pollution in 2007	19
	2.1	Meteorological conditions in 2007	19
	2.2	Emission data in 2007	21
		2.2.1 Emission reporting under the LRTAP Convention in 2009	21
		2.2.2 Emission data used for modelling in 2009	23
		2.2.3 Differences between 2007 and 2006 emissions	23
	2.3	Main changes in concentrations, depositions and transboundary fluxes	
		in 2007	26
	2.4	Combined model results and observations	29
		2.4.1 Acidification and eutrophication	29
		2.4.2 Ozone and NO_2	29
	2.5	Exceedances of critical loads	33
	Refe	rences	36

3	Statı	is and new development in the EECCA region	39
	3.1	Emission inventories and emission reporting in	
		EECCA countries	39
		3.1.1 Status of reporting	39
		3.1.2 TF HTAP Regional workshop in St. Petersburg	40
		3.1.3 Areas for improvement	41
	3.2	Status and progress regarding measurements	42
	3.3	Modelled pollution levels in EECCA countries	42
	Refe	rences	44
II	So	urce receptor matrices	45
4	Tren	ds in source allocation of pollutants	47
	4.1	Introduction and methodology	48
	4.2	Emissions used in SR trend runs	48
	4.3	Trends in source allocation of pollutants	50
		4.3.1 Transboundary versus indigenous contributions	58
	4.4	SR results for the Appendix	61
	4.5	Conclusions	61
	Refe	rences	62
5	Cont	tributions from different emission sectors to depositions and air con-	
	centi	rations	65
	5.1	Contributions from different sectors on European scale	65
	5.2	National sector contributions to concentrations	
		and depositions	67
		5.2.1 Sector contributions to depositions of oxidised nitrogen	70
		5.2.2 Sector contributions to depositions of sulphur	71
		5.2.3 Sector contributions to depositions of reduced nitrogen	71
		5.2.4 Sector contributions to ozone expressed as SOMO35	72
		5.2.5 Sector contributions to concentrations of SIA and $PM_{2.5}$	75
	5.3	Concluding remarks	78
	Refe	rences	79
6	The	importance of the meteorological driver for Source-Receptor Calcu-	
	latio	ns	81
	6.1	Pollution export	83
	6.2	Pollution import	84
	6.3	Indigenous pollution	86
	6.4	Conclusions	86
	Refe	rences	87

III Ongoing work

Π	I Ongoing work	89
7	Improved resolution in the EMEP model	91
	7.1 Meteorological Fields	91
	7.2 Emissions	93
	7.3 Landuse	94
	7.4 Comparison of model results and measurements	94
	7.4.1 Acidifying and eutrophying compounds	94
	7.4.2 Effects of improved resolution on PM model results	96
	7.5 Fine resolution source-receptor matrices	97
	7.5.1 Results	98
	7.6 Conclusions	101
	References	101
8	Comparison of modelled nitrogen deposition and nitrogen concentration	S
	in mosses	103
	8.1 Results	104
	8.2 Conclusions	105
	References	106
9	Modelled and observed NO_2 tropospheric column and surface concentra	-
	tions	107
	9.1 Results	108
	9.2 Conclusions	108
	References	108
I	Appendixes	111
	National amigsion trands for 1007 2006	4.1
A	Poforonoos	A:1
	Kelelences	A:2
B	National emissions for 2007 in the extended EMEP domain	B:1
	References	B:2

С	Source-receptor tables for 2007 (Extended domain)	C:1
C	Source-receptor tables for 2007 (Extended domain)	

CHAPTER 1

Introduction

1.1 Purpose and structure of this report

The mandate of EMEP is to provide sound scientific support for the Convention on Long-range Transboundary Air Pollution (LRTAP), in particular in the areas of atmospheric monitoring and modelling, emission inventories and emission projections and integrated assessment.

Each year EMEP provides information on transboundary pollution fluxes inside the EMEP area, relying on information on emission sources and monitoring results provided by the Parties to the LRTAP Convention. The purpose of the annual EMEP status reports is to provide an overview of the status of transboundary air pollution in Europe, tracing progress towards existing emission control Protocols and supporting the design of new protocols, when necessary. An additional purpose of these reports is to identify problem areas and new findings of relevance to the Convention.

In order to better fulfill its purpose the present report has been divided in four parts. Part I presents the status of transboundary air pollution with respect to acidification, eutrophication and ground level ozone in Europe in 2007 as well as a summary of the status and developments in the EECCA countries. Part II presents information on source-receptor relationships. Part III summarizes ongoing work of relevance to the EMEP programme. Part IV contains basic information on emissions and transboundary fluxes in table form.

The first chapter in this report presents the status of transboundary air pollution for acidification, eutrophication and ground level ozone in Europe in 2007 and identifies the main differences with respect to previous years. Further, integrated observations and model results are presented to characterize air pollution in Europe in 2007.

As recommended by the Steering Body to EMEP on its 31st session, 4 new coun-

tries in EECCA are now included in the operational EMEP model domain. The new countries are Kyrgyzstan (or the Kyrgyz Republic), Tajikistan, Turkmenistan and Uzbekistan. In addition, the model domain covers the whole area of Kazakhstan and a larger part of the Russian Federation, although still not its full domain.

To achieve an implementation of the extended domain into the operational EMEP model runs, the meteorological driver has been changed from PARLAM-PS to HIR-LAM. For the first time this year we present calculations of all the countries, including the 4 new countries in EECCA, with model runs using the same meteorological driver.

Although the EMEP model now has the capability to provide results for all the EECCA countries, the quality of the model results depends heavily on the quality of the emission inventories. Further, the low availability of measurements in this region prevents a proper evaluation of the model results. The second chapter discusses these issues and the developments in the EECCA region both with respect to emissions, measurements and modelling.

Part II evaluates country-to-country blame matrices. In chapter 4 we present sourcereceptor calculations for 10 years (1997-2006) using the same model version (rv3.1) and meteorological driver (PARLAM-PS). This consistent set of country-to-country blame matrices has allowed for a study of trends in transboundary air pollution. The blame matrices themselves are not presented in this report, but they are provided for each country in the country reports and the data is available on www.emep.int.

The long-term timeseries of country-to-country blame matrices are accompanied by source-receptor matrices per emission sector, as discussed in chapter 5. Both the contribution from emissions sectors on a European scale and the contributions from groups of emission sectors in individual countries are presented for the year 2006.

In order to assess the implications of the change of the meteorological driver (from PARLAM-PS to HIRLAM) on the transboundary fluxes, a comparison between country-to-country blame matrices with different meteorological drivers is presented in chapter 6.

During the last years, the modelling capabilities of EMEP have been strengthened to allow a consistent description of pollution dispersion in the atmosphere occuring on local, regional and global scales. While the development of the hemispheric and global versions of the Unified EMEP model has been documented in separate technical reports (Travnikov et al. 2009, Gusev et al. 2008, Jonson et al. 2007, 2006), chapter 7 in this report presents finer resolution calculations with the Unified model ($25 \times 25 \text{ km}^2$ and $10 \times 10 \text{ km}^2$). The technical effort associated with the development of capability to run the EMEP model on different scales has also led to additional flexibility in the EMEP modelling such as the possibility of running the EMEP model on other projections than the polar stereographic projection used in the operational model runs. For the first time, results from fine resolution ($0.2^{\circ} \times 0.2^{\circ}$) model runs on a rotated spherical grid are presented.

Running the EMEP model on fine resolution increases the CPU requirements considerably. In order to assess whether it is necessary to produce country-to-country matrices on fine resolution, a first assessment of the effect of resolution on source-

CHAPTER 1. INTRODUCTION

receptor matrices has been provided in chapter 7.

Chapter 8 summarizes the first results of a collaboration between EMEP/MSC-W and ICP Vegetation. The European moss biomonitoring network, coordinated by the ICP Vegetation, attempted for the first time in 2005/6 to establish whether mosses can be used as biomonitors of atmospheric nitrogen deposition at the European scale. These data on nitrogen concentrations in mosses have been compared with the results from the EMEP model in a cross validation study.

The last chapter in part III of this report presents preliminary results for a comparison between the co-located satellite data, hourly observations of NO_2 surface concentrations and model result.

Other new developments within EMEP have also taken place. Although they are not documented here, they have been made available during the last year, either as peer-reviewed publications, technical reports or data notes. These are presented in section 1.5.

The last part of this report contains emission trends and country-to-country blame matrices with calculations of the transboundary contributions to pollution in different countries for 2007. This information is complemented by numerical fields and data on the EMEP website. The reader is encouraged to visit the website, http://www.emep.int, to access this additional information.

1.2 Definitions, statistics used

For sulphur and nitrogen compounds, the basic units used throughout this report are μg (S or N)/m³ for air concentrations and mg (S or N)/m² for depositions. Emission data, in particular in some of the Appendixes is given in Gg (SO₂) and Gg (NO₂) in order to keep consistency with reported values.

For ozone, the basic units used throughout this report are ppb (1 ppb = 1 part per billion by volume) or ppm (1 ppm = 1000 ppb). At 20°C and 1013 mb pressure, 1 ppb ozone is equivalent to 2.00 μ g m⁻³.

A number of statistics have been used to describe the distribution of ozone within each grid square:

- Mean of Daily Max. Ozone First we evaluate the maximum modelled concentration for each day, then we take the 6-monthly mean of these values, over the 6-month period 1 April - 30 September.
- **SOMO35** The Sum of Ozone Means Over 35 ppb is the indicator for health impact assessment recommended by WHO. It is defined as the yearly sum of the daily maximum of 8-hour running average over 35 ppb. For each day the maximum

of the running 8-hours average for O_3 is selected and the values over 35 ppb are summed over the whole year.

If we let A_8^d denote the maximum 8-hourly average ozone on day d, during a year with N_y days (N_y = 365 or 366), then SOMO35 can be defined as:

$$SOMO35 = \sum_{d=1}^{d=N_y} \max(A_8^d - 35 \text{ ppb}, 0.0)$$

where the max function ensures that only A_8^d values exceeding 35 ppb are included. The corresponding unit is ppb.days.

AFstY - is the accumulated stomatal ozone flux over a threshold Y nmol $m^{-2} s^{-1}$, i.e.:

$$AFstY_{gen} = \int \max(F_{st} - Y, 0) dt$$
(1.1)

where stomatal flux F_{st} , and threshold, Y, are in nmol m⁻² s⁻¹, and the max function evaluates max(A - B, 0) to A - B for A > B, or zero if $A \le B$. This integral is evaluated over time, from the start of the growing season (SGS), to the end (EGS).

For the generic crop and forest species, the suffix gen is usually applied, e.g. $AF_{st}1.6_{gen}$ is used for forests.

AOT40 - is the accumulated amount of ozone over the threshold value of 40 ppb, i.e..

$$AOT40 = \int \max(O_3 - 40 \text{ ppb}, 0.0) dt$$

where the max function ensures that only ozone values exceeding 40 ppb are included. The integral is taken over time, namely the relevant growing season for the vegetation concerned. The corresponding unit are ppb.hours (abbreviated to ppb.h). The usage and definitions of AOT40 have changed over the years though, and also differ between UNECE and the EU. Mills (2004) give the latest definitions for UNECE work, and describes carefully how AOT40 values are best estimated for local conditions (using information on real growing seasons for example), and specific types of vegetation. Further, since O_3 concentrations can have strong vertical gradients, it is important to specify the height of the O_3 concentrations used. In previous EMEP work we have made use of modelled O_3 from 1 m or 3 m height, the former being assumed close to the top of the vegetation, and the latter being closer to the height of O_3 observations. In the Mapping Manual (Mills 2004) there is an increased emphasis on estimating AOT40 using ozone levels at the top of the vegetation canopy.

Although the EMEP model now generates a number of AOT-related outputs, in accordance with the recommendations of Mills (2004) we will concentrate in this report on two definitions:

- **AOT40**^{**uc**} AOT40 calculated for forests using estimates of O_3 at forest-top (*uc*: upper-canopy). This AOT40 is that defined for forests by Mills (2004), but using a default growing season of April-September.
- **AOT40** $_{c}^{uc}$ AOT40 calculated for agricultural crops using estimates of O₃ at the top of the crop. This AOT40 is close to that defined for agricultural crops by Mills (2004), but using a default growing season of May-July, and a default crop-height of 1 m.

In all cases only daylight hours are included, and for practical reasons we define daylight for the model outputs as the time when the solar zenith angle is equal to or less than 89°. (The proper UNECE definition uses clear-sky global radiation exceeding 50 W m⁻² to define daylight, whereas the EU AOT definitions use day hours from 08:00-20:00. Model outputs are also available using the EU definition, but not presented here).

The AOT40 levels reflect interest in long-term ozone exposure which is considered important for vegetation - critical levels of 3 000 ppb.h have been suggested for agricultural crops and natural vegetation, and 5 000 ppb.h for forests (Mills 2004). Note that recent UNECE workshops have recommended that AOT40 concepts are replaced by ozone flux estimates for crops and forests.

This report includes also concentrations of particulate matter (PM). The basic units throughout this report are $\mu g/m^3$ for PM concentrations and the following acronyms are used for different components to PM:

- **SIA** are secondary inorganic aerosols and are defined as the sum of sulphate (SO₄), nitrate (NO₃) and ammonium (NH₄). In the Unified EMEP model SIA is calculated as the sum: SIA= SO₄ + NO₃(fine) + NO₃(coarse) + NH₄
- **PPM** denotes primary particulate matter, originating directly from anthropogenic emissions. It is usually distinguished between fine primary particulate matter, $PPM_{2.5}$, with dry aerosol diameters below 2.5 μ m and coarse primary particulate matter, PPM_{co}, with dry aerosol diameters between 2.5 μ m and 10 μ m.
- $PM_{2.5}$ denotes fine particulate matter, defined as the integrated mass of aerosol with dry diameter up to 2.5 μ m. In the Unified EMEP model $PM_{2.5}$ is calculated as the sum: $PM_{2.5} = SO_4 + NO_3$ (fine) + $NH_4 + SS$ (fine) + $PPM_{2.5}$
- PM_{coarse} denotes coarse particulate matter, defined as the integrated mass of aerosol with dry diameter between 2.5 μ m and 10 μ m. In the Unified EMEP model PM_{coarse} is calculated as the sum: $PM_{coarse} = NO_3(coarse) + SS(coarse) + PPM_{co}$

 PM_{10} - denotes particulate matter, defined as the integrated mass of aerosol with dry diameter up to 10 μ m. In the Unified EMEP model PM_{10} is calculated as the sum: $PM_{10} = SO_4 + NO_3$ (fine) + $NH_4 + SS$ (fine) + $PPM_{2.5} + NO_3$ (coarse) + SS(coarse) + PPM_{co}

1.3 The EMEP extended domain

The EMEP domain defines the area where information on long-range transboundary air pollution is available from the EMEP centres. The information available concerns emissions, observations and modelling results. Last year, the Steering Body adopted an extension of the official EMEP domain to facilitate the inclusion of countries in Eastern Europe, Caucasus and Central Asia (EECCA) in the EMEP calculations (ref. ECE/EB.AIR/GE.1/2007/9). Thus, from 2008, the official 50×50 km² polar stereo-graphic EMEP grid has been extended from 132×111 to 132×159 grid cells, following Stage 1 in ECE/EB.AIR/GE.1/2007/9. In geographical projection it leads to an extension eastward. The extended EMEP domain is presented in Figure 1.1.

The present extension of the EMEP modelling area has recognized drawbacks. One of the drawbacks is that the current extended EMEP domain only partly covers the Russian Federation. It is also recognized that results on air pollution in central Asian countries are highly dependent on sources outside the calculation domain. Countries in Central Asia are contiguous with other Asian countries, like China, India, Pakistan and Iran, that significantly affect pollution levels over the EECCA territories but are not included directly in the calculations. Consequently, the current EMEP modelling capacity for EECCA countries and the related grid domain is only an interim solution up to 2011. After that, a new EMEP official domain covering adequately transport of pollution to all 12 EECCA countries is expected to be adopted.

The extension of the official EMEP domain made it necessary to introduce new codes for the new countries and areas now included in the extended EMEP domain. The new country codes and their rationale are explained below.

Kyrgyzstan and Tajikistan were not included in the official EMEP domain in any part. These two countries are now included with their full area inside the extended EMEP domain. For these two countries, following UNECE nomenclature, ISO2 country codes are used. The codes are 'KG' for Kyrgyzstan and 'TJ' for Tajikistan.

In the case of the Russian Federation and Kazakhstan, their respective ISO2 codes, 'RU' and 'KZ', have previously referred to the parts of their territories inside the official EMEP domain. To keep new model results consistent and comparable with the previous ones, we keep these ISO2 country codes and use them to define the same areas as before in the official EMEP domain. Additional codes are used to identify parts of these countries' territories outside the official EMEP grid.

For Kazakhstan, the area of the country in the extension of the EMEP domain is denoted by 'KZE', as shown in Figure 1.1 (a). The total territory of Kazakhstan in the

extended EMEP domain is then the sum of 'KZ' and 'KZE', and is denoted as 'KZT' in this report (see Figure 1.1 (b)).

For the Russian Federation, the territory in the extension of the domain is divided into two parts, 'RUX' and 'RFE', as shown in Figure 1.1 (a). The reason for this division is that the area called 'RUX' ('EMEP external part of Russian Federation') has been used in the modelling domain previously, although it was not included in the official EMEP domain. The combined territory of the Russian Federation inside the extended EMEP domain is denoted by 'RUE' that stands for 'Russian Federation in the extended EMEP domain' and is presented in Figure 1.1 (b).

Until this year, 2008, Turkmenistan and Uzbekistan were not included in the official EMEP domain as individual countries. However, parts of their territories were inside the official EMEP grid and included in the region called 'Remaining Asian Areas', denoted by country code 'ASI'. As indicated in Figure 1.1 (a), 'ASI' also includes Syria, Lebanon, Israel, parts of Iran, Iraq and Jordan. In the extended EMEP domain, the 'ASI' area has been redefined, so the areas of Turkmenistan and Uzbekistan inside the old 'ASI' have now been extracted.

The territories of Turkmenistan and Uzbekistan in the domain extension are denoted by 'TME' and 'UZE', respectively, as in Figure 1.1 (a). The whole territories of Turkmenistan and Uzbekistan in the extended EMEP domain are the sum of the 'extended' and 'official' parts of the countries, namely the sum of 'TME' and 'TMO', and 'UZE' and 'UZO'. The respective ISO2 codes are 'TM' for Turkmenistan and 'UZ' for Uzbekistan.

The region code 'ASE' in Figure 1.1 (a) denotes Asian countries in the extension of the EMEP domain and includes parts of Afghanistan, India, Pakistan, China and Mongolia. The 'ASE' area together with those parts of 'ASI' which are left after the exclusion of the Turkmen and Uzbek territories forms 'AST' in Figure 1.1 (b) referring to all Asian areas in the extended EMEP domain.

1.4 Country Codes

Many tables and graphs in this report make use of codes to denote countries and regions in the EMEP area. Results are presented for both the official and the extended EMEP domains. All through the report an effort is made to distinguish results from these two different domains. Table 1.1 provides an overview of these codes and lists the countries and regions included, with explicit mention whether the code refers to the official or the extended EMEP domain.

The most noteworthy difference between the official and the extended EMEP domains is the definition of the EECCA countries. Within the official EMEP domain, there are only 8 EECCA countries included or partially included. These are: Azerbaijan, Armenia, Belarus, parts of Kazakhstan, Georgia, Republic of Moldova, parts of the Russian Federation and Ukraine. In the extended EMEP domain, all the 12 EECCA countries are included. The new domain includes Azerbaijan, Armenia, Belarus, Geor-

Figure 1.1: Overview of the country/area codes in the extended EMEP domain. Figure (a) shows the previously defined areas in the official EMEP grid ('RU', 'KZ', 'ASI') together with the new areas in the grid extension ('RUX', 'RFE', 'KZE', 'UZE', 'TME', 'TJ', 'KG', 'ASE'). Figure (b) shows the countries/areas with their codes in the extended EMEP grid ('RUE', 'KZT', 'UZ', 'TM', 'TJ', 'KG', 'AST').

gia, Kazakhstan, Kyrgyzstan, Republic of Moldova, Tajikistan, Turkmenistan, Ukraine and Uzbekistan, and covers a larger part of the Russian Federation.

All 51 Parties to the LRTAP Convention, except four, are included in the analysis presented in this report. The Parties that are excluded of the analysis are: Canada and the United States of America, Monaco and Liechtenstein. The first two countries are not included because they lie outside the EMEP domains, both the official and the extended domains. Monaco and Liechtenstein are not included because their emissions and geographical extents are below the accuracy of the present source-receptor calculations in 50×50 km².

Malta is introduced as a receptor country. The estimated emissions from Malta are below the accuracy limits of the source-receptor calculations and do not justify a separate study of Malta as an emitter country.

1.5 Other Publications

This report is complemented with EMEP Status Report 4/2009 on Transboundary Particulate Matter in Europe and by country specific reports on the 2009 status of transboundary acidification, eutrophication, ground level ozone and PM. This year, Russian

CHAPTER 1. INTRODUCTION

Code	Country/Region	Code	Country/Region
AL	Albania	IE	Ireland
AM	Armenia	IS	Iceland
ASI	Remaining Asian areas (official)	IT	Italy
AST	Remaining Asian areas (extended)	KG	Kyrgyzstan
AT	Austria	KZ	Kazakhstan (official)
ATL	Remaining NE. Atlantic Ocean	KZT	Kazakhstan (extended)
AZ	Azerbaijan	LT	Lithuania
BA	Bosnia and Herzegovina	LU	Luxembourg
BAS	Baltic Sea	LV	Latvia
BLS	Black Sea	MD	Republic of Moldova
BE	Belgium	ME	Montenegro
BG	Bulgaria	MED	Mediterranean Sea
BIC	Boundary and Initial Conditions	MK	The FYR of Macedonia
BY	Belarus	MT	Malta
СН	Switzerland	NL	Netherlands
CY	Cyprus	NO	Norway
CZ	Czech Republic	NOA	North Africa
DE	Germany	NOS	North Sea
DK	Denmark	PL	Poland
EE	Estonia	PT	Portugal
EMC	EMEP land areas (official)	RO	Romania
EXC	EMEP land areas (extended)	RS	Serbia
ES	Spain	RU	Russian Federation (official)
EU	European Community	RUE	Russian Federation (extended)
FI	Finland	SE	Sweden
FR	France	SI	Slovenia
GB	United Kingdom	SK	Slovakia
GE	Georgia	TJ	Tajikistan
GL	Greenland	TM	Turkmenistan
GR	Greece	TR	Turkey
HR	Croatia	UA	Ukraine
HU	Hungary	UZ	Uzbekistan

Table 1.1: Country/region codes used throughout this report: 'official' refers to the area of the country/region which is inside the official EMEP grid domain, while 'extended' refers to the area of the country/region inside the extended EMEP grid domain.

The 'European Community' or EU27 includes Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, The Netherlands, Portugal, Spain, Sweden, United Kingdom, Cyprus, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Malta, Poland, Slovakia, Slovenia, Bulgaria and Romania.

'EECCA12' includes Armenia, Azerbaijan, Belarus, Georgia, Kazakhstan, Kyrgystan, Republic of Moldova, Tajikistan, Turkmenistan, Ukraine and Uzbekistan and covers a large part of the Russian Federation.

versions of the country reports are available for all 12 EECCA countries.

A list over all associated technical reports and notes by the EMEP centres in 2009 follows at the end of this section. In addition, the following scientific papers of relevance to transboundary air pollution and involving EMEP/MSC-W and CCC staff have become available in 2008/2009:

Peer-reviewed publications

Aas, W., L. A. Alleman, E. Bieber, D. Gladtke, J. L. Houdret, V. Karlsson and C. Monies. Comparison of methods for measuring atmospheric deposition of arsenic, cadmium, nickel and lead. *J. Environ. Monit.*, 11:1276–1283, 2009. doi:10.1039/B822330K.

Amiridis, V., D. S. Balis, E. Giannakaki, A. Stohl, S. Kazadzis, M. E. Koukouli, and P. Zanis. Optical characteristics of biomass burning aerosols over Southeastern Europe determined from UV-Raman lidar measurements. *Atmos. Chem. Phys.*, 9:2431–2440, 2009.

Bartnicki, J. and H. Fagerli. Airborne load of nitrogen to European seas. *Ecological Chemistry and Engeineering S*, 15(3):297–313, 2008.

Fiore, A. M., F. J. Dentener, O. Wild, C. Cuvelier, M. G. Schultz, C. Textor, M. Schulz, C. Atherton, D. Bergmann, I. Bey, G. Carmichael, R. Doherty, B. N. Duncan, G. Faluvegi, G. Folberth, M. Garcia Vivanco, M. Gauss, S. Gong, D. Hauglustaine, P. Hess, T. Holloway, L. W. Horowitz, I. S. A. Isaksen, D. J. Jacob, J. E. Jonson, J. W. Kaminski, T. J. keating, A. Lupu, I. MacKenzie, E. Marmer, V. Montanaro, R. Park, K. J. Pringle, J. A. Pyle, M. G. Sanderson, S. Schroeder, D. T. Shindell, D. Stevenson, S. Szopa, R. Van Dingenen, P. Wind, G. Wojcik, S. Wu, G. Zeng and A. Zuber. Multi-model estimates of intercontinental source-receptor relationships for ozone pollution *J. Geophys. Res.*, 2009, 114, doi:10.1029/2008JD010816

Hallquist, M., J. C. Wenger, U. Baltensperger, Y. Rudich, D. Simpson, M. Claeys, J. Dommen, N. M. Donahue, C. George, A. H. Goldstein, J. F. Hamilton, H. Herrmann, T. Hoffmann, Y. Iinuma, M. Jang, M. Jenkin, J. L. Jimenez, A. Kiendler-Scharr, W. Maenhaut, G. McFiggans, T. F. Mentel, A. Monod, A. S. H. Prévôt, J. H. Seinfeld, J. D. Surratt, R. Szmigielski and J. Wildt. The formation, properties and impact of secondary organic aerosol: current and emerging issues. *Atmos. Chem. Phys. Discuss.*, 9:3555–3762, 2009, Accepted for ACP.

Hirdman, D., K. Aspmo, J. F. Burkhart, S. Eckhardt, H. Sodemann and A. Stohl. Transport of mercury in the Arctic atmosphere: Evidence for a spring-time net sink and summer-time source. *Geophys. Res. Lett.*, 36:L12814, 2009. doi:10.1029/2009GL038345.

Hole, L. R., J. H. Christensen, T. Ruoho-Airola, K. Tørseth, V. Ginzburg and P. Glowacki. Past and future trends in concentrations of sulphur and nitrogen compounds in the Arctic. *Atmos. Environ.*, 43(4):928–939, 2009. doi:10.1016/j.atmosenv.2008.10.043.

Jonson J. E., L. Tarrasón, H. Klein, V. Vestreng, J. Cofala and C. Whall. Effects of ship emissions on European ground level ozone in 2020. *Int. J. Remote Sensing*, 2009, in press.

Klingberg, J., H. Danielsson, D. Simpson and H. Pleijel. Comparison of modelled and measured ozone concentrations and meteorology for a site in southwest Sweden: Implications for ozone uptake calculations. *Environ. Poll.*, 115:99–111, 2008.

Kulmala, M., V.-M. Kerminen, A. Laaksonen, I. Riipinen, M. Sipilä, T.M. Ruuskanen, L. Sogacheva, P. Hari, J. Bäck, K. E. J. Lehtinen, Y. Viisanen, M. Bilde, B. Svenningsson, M. Lazaridis, K. Tørseth, P. Tunved, E. D. Nilsson, S. Pryor, L.-L. Sørensen, U. Hõrrak, P. M. Winkler, E. Swietlicki, M.-L. Riekkola, R. Krejci, C. Hoyle, Ø. Hov, G. Myhre and H.-C. Hansson. Overview of the biosphereaerosol-cloud-climate interactions (BACCI) studies. *Tellus B*, 60:300–317,2008.

Lazaridis, M., V. Latos, V. Aleksandropoulouv, Ø. Hov, A. Papayannis and K. Tørseth. Contribution of forest fire emissions to atmospheric pollution in Greece. *Air Qual. Atmos. Health*, 1:143–158, 2008. doi:10.1007/s11869-008-0020-0.

Manninen, S., S. Huttunen, H. Tømmervik, L. R. Hole and S. Solberg. Northern plants and ozone. *Ambio*, in press, 2009.

Massoli, P., T. S. Bates, P. K. Quinn, D. A. Lack, T. Baynard, B. M. Lerner, S. C. Tucker, J. Brioude, A. Stohl and A. J. Williams. Aerosol optical and hygroscopic properties during TexAQS GoMACCS 2006 and their impact on aerosol direct radiative forcing. *J. Geophys. Res.*, 114:D00F07, 2009. doi:10.1029/2008JD011604.

Myhre, G., T. F. Berglen, M. Johnsrud, C. R. Hoyle, T. K. Berntsen, S. A. Christopher, D. W. Fahey, I. S. A. Isaksen, T. A. Jones, R. A. Kahn, N. Loeb, P. Quinn, L. Remer, J. P. Schwarz and K. E. Yttri. Radiative forcing of the direct aerosol effect using a multi-observation approach. *Atmos. Chem. Phys.*, 9:1365–1392, 2009.

Nam, J. J., Ö. Gustafsson, P. Kurt, K. Breivik, E. Steinnes and K. C. Jones Relationships between organic matter, black carbon and persistent organic pollutants in European background soils: implications for sources and environmental fate. *Environmental Pollution*, 156(3):809-817, 2008. doi:10.1016/j.envpol. 2008.05.027. Pacyna, J. M., E. G. Pacyna and W. Aas. Changes of emissions and atmospheric deposition of mercury, lead, and cadmium in Europe. *Atmos. Environ.*, 43(1):117–127, 2009. doi:10.1016/j.atmosenv.2008.09.066.

Paris, J.-D., P. Ciais, P. Nédélec, M. Ramonet, B. D. Belan, M. Y. Arshinov, G. S. Golitsyn, I. Granberg, A. Stohl, G. Cayez, G. Athier, F. Boumard and J.-M. Cousin. The YAK-AEROSIB transcontinental aircraft campaigns: new insights on the transport of CO2, CO and O3 across Siberia and in the Northern Hemisphere. *Tellus B*, 60(4):551–568, 2008. doi:10.1111/j.1600-0889.2008. 00369.x.

Phillipin, S., P. Laj, J. P. Putaud, A. Wiedensohler, G. De Leeuw, A. M. Fjaeraa, U. Platt, U. Baltensberger, and, M. Fiebig. EUSAAR - An Unprecedented Network of Aerosol Observation in Europe. *Earozoru Kenkyu*, 24(2):78–83, 2009.

Reidmiler D. R., A. M. Fiore, D. A. Jaffe, D. Bergmann, C. Cuvelier, F. J. Dentener, B. N. Duncan, G. Folberth, M. Gauss, S. Gong, P. Hess, J. E. Jonson, T. Keating, A. Lupu, E. Marmer, R. Park, M. G. Schultz, D. T. Shindell, S. Szopa, M. G. Vivanco, O. Wild, A. Zubera. The influence of foreign vs. North American emissions on surface ozone in the US. *Atmos. Chem. Phys. Discuss.*, 9:7927–7969, 2009.

Sanderson M. G., F. J. Dentener, A. M. Fiore, K. Cuvelier, T. J. Keating, A. Zuber, C. S. Atherton, D. J. Bergmann, T. Diehl, R. M. Doherty, B. N. Duncan, P. Hess, L. W. Horowitz, D. Jacob, J. E. Jonson, J. W. Kaminski, A. Lupu, I. A. Mackenzie, E. Mancini, E. Marmer, R. Park, G. Pitari, M. J. Prather, K. J. Pringle, S. Schroeder, M. G. Schultz, D. T. Shindell, S. Szopa, O. Wild and P. Wind. A multi-model study of the hemispheric transport and deposition of oxidised nitrogen. *Geophys. Res. Let.*, 35:L17815, 2008. doi:10.1029/2008GL035389.

Shindell, D. T., M. Chin, F. Dentener, R. M. Doherty, G. Faluvegi, A. M. Fiore, P. Hess, D. M. Koch, I. A. MacKenzie, M. G. Sanderson, M. G. Schultz, M. Schulz, D. S. Stevenson, H. Teich, C. Textor, O. Wild, D. J. Bergmann, I. Bey, H. Bian, C. Cuvelier, B. N. Duncan, G. Folberth, L. W. Horowitz, J. E. Jonson, J. W. Kaminski, E. Marmer, R. Park, K. J. Pringle, S. Schroeder, S. Szopa, T. Takemura, G. Zeng, T. J. Keating and A. Zuber. A multi-model assessment of pollution transport to the Arctic. *Atmos. Chem. Phys.*, 8:5353–5372, 2008.

Sutton, M., D. Simpson, P. Levy, R. Smith, S. Reis, M. van Oijen and W. de Vries. Uncertainties in the relationship between atmospheric nitrogen deposition and forest carbon sequestration. *Global Change Biology*, 14:1–7, 2008.

Szidat, S., M. Ruff, L. Wacker, H.-A. Synal, M. Hallquist, A. S. Shannigrahi, K. E. Yttri, C. Dye and D. Simpson. Fossil and non-fossil sources of organic

CHAPTER 1. INTRODUCTION

carbon (OC) and elemental carbon (EC) in Göteborg, Sweden. *Atmos. Chem. Physics*, 9:1521–1535, 2009.

Tuovinen, J.-P. and D. Simpson. An aerodynamic correction for the European ozone risk assessment methodology. *Atmos. Environ.*, 42:8371–8381, 2008.

Tsyro, S. Regional Model for Formation, Dynamics, and Long-range Transport of Atmospheric Aerosol. *Russian Meteorology and Hydrology*, 33(2):82–90, 2008. doi:10.3103/S1068373908020039.

Tsyro, S. Regional Model for Formation, Dynamics, and Long-range Transport of Atmospheric Aerosol: Study of Atmospheric Aerosol Properties in Europe. *Russian Meteorology and Hydrology*, 33(5):300–309, 2008. doi:10.3103/S106837390805004X.

Pacyna, J. M., E. G. Pacyna and W. Aas. Changes of emissions and atmospheric deposition of mercury, lead, and cadmium in Europe. *Atmos. Environ.*, 43(1):117–127, 2009. doi:10.1016/j.atmosenv.2008.09.066.

Tuovinen, J.-P., L. Emberson and D. Simpson. Modelling ozone fluxes to forests for risk assessment: status and prospects. *Annals of Forest Science*, 66:401, 2009. doi:10.1051/forest/2009024.

Yttri, K. E., C. Dye, O.-A. Braathen, D. Simpson and E. Steinnes. Carbonaceous aerosols in Norwegian urban sites. *Atmos. Chem. Phys.*, 9:2007–2020, 2009.

Yttri, K. E., C. Lund-Myhre and K. Tørseth, The carbonaceous aerosol - a remaining challenge. *WMO Bulletin*, 58:54–60, 2009.

Associated EMEP reports and notes in 2009

Joint reports

- Transboundary acidification, eutrophication and ground level ozone in Europe in 2007. Joint MSC-W & CCC & CEIP Report. EMEP Status Report 1/2009.
- Heavy Metals: Transboundary Pollution of the Environment. Joint MSC-E & CCC & CCE Report. EMEP Status Report 2/2009.
- Persistent Organic Pollutants in the Environment. Joint MSC-E & CCC Report. EMEP Status Report 3/2009.
- Transboundary Particulate Matter in Europe. Joint CCC & MSC-W & CEIP Report. EMEP Status Report 4/2009.
- Development of the EMEP global modelling framework: Progress report. Joint MSC-E & MSC-W Report. EMEP/MSC-E Technical Report 7/2009.

CCC Technical and Data reports

- A.-G. Hjellbrekke. Data Report 2007 Acidifying and eutrophying compounds and particulate matter. EMEP/CCC-Report 1/2009.
- A. M. Fjæraa and A.-G. Hjellbrekke. Ozone measurements 2007. EMEP/CCC-Report 2/2009.
- W. Aas and K. Breivik. Heavy metals and POP measurements 2007. EMEP/CCC-Report 3/2009.
- S. Solberg. VOC measurements 2007. EMEP/CCC-Report 4/2009.
- H. Uggerud and A. G. Hjellbrekke. Analytical intercomparison of heavy metals in precipitation 2008. EMEP/CCC-Report 5/2009.
- H. Uggerud. The twenty-sixth intercomparison of analytical methods within EMEP. EMEP/CCC-Report 6/2009.

CEIP Technical and Data reports

K. Mareckova, R. Wankmüller, M. Wiesser, S. Poupa, M. Anderl and B. Muik. Inventory review 2009. Emission data reported under the LRTAP Convention and NEC Directive. Stage 1 and 2 review. Status of gridded data. EMEP/CEIP Technical Report 1/2009.

MSC-E Technical and Data reports

- V. Shatalov, N. Vulykh and O. Rozovskaya. Model Assessment of Potential for Longrange Transboundary Atmospheric Transport and Persistence of Hexabromocyclododecane (HBCD). EMEP/MSC-E Information Note 4/2009
- V. Shatalov, N. Vulykh and O. Rozovskaya. Model Assessment of Potential for Longrange Transboundary Atmospheric Transport and Persistence of Trifluralin. EMEP/ MSC-E Information Note 5/2009
- V. Shatalov, N. Vulykh and O. Rozovskaya. Model Assessment of Potential for Longrange Transboundary Atmospheric Transport and Persistence of Pentachlorophenol (PCP). EMEP/MSC-E Information Note 6/2009

MSC-W Technical and Data reports

Á. Nyíri, M. Gauss and Heiko Klein. Transboundary Data by Main Pollutants (S, N, O3) and PM Country Reports. EMEP/MSC-W Data Note 1/2009.

Other associated reports and notes in 2008/2009

- Amann, M., D. Derwent, B. Fosberg, O. Hänninen, F. Hurley, F. de Leeuw, M. Krzyzanowski, S. J. Liu, C. Mandin, J. Schneider, P. Schwarze and D. Simpson. Health risks of ozone from long-range transboundary air pollution. World Health Organisation, 2008.
- Simpson, D. Biosphere-atmosphere interactions in the EMEP MSC-W chemical transport model. Towards process-based modelling of terrestrial trace gas emissions, iLEAPS Newsletter, www.ileaps.org, 2009, Issue No. 6, 10-12.

References

- Gusev, A., Travnikov, O., Sokovych, V., Tørseth, K., Gauss, M., Jonson, J., Nyíri, A., Simpson, D., Wind, P., and Tarrasón, L.: Towards the development of a commom EMEP global modelling framework, EMEP/MSC-W Technical Report 1/2008, 2008.
- Jonson, J., Wind, P., Gauss, M., Tsyro, S., Søvde, A., Klein, H., Isaksen, I., and Tarrasón, L.: First results from the hemispheric EMEP model and comparison with the global Oslo CTM2 model, EMEP/MSC-W Technical Report 2/2006, 2006.
- Jonson, J., Tarrasón, L., Wind, P., Gauss, M., Valiyaveetil, S., Tsyro, S., Klein, H., Isaksen, I., and Benedictow, A.: First evaluation of the global EMEP model with comparison with the global Oslo CTM2 model, EMEP/MSC-W Technical Report 2/2007, 2007.
- Mills, G.: Mapping critical levels for vegetation, in UNECE Convention on Longrange Transboundary Air Pollution. Manual on Methodologies and Criteria for Mapping Critical Loads and Levels and Air Pollution Effects, Risks and Trends, edited by UBA, constantly updated version available at www.oekodata.com/ icpmapping/, 2004.
- Travnikov, O., Jonson, J. E., Andersen, A. S., Gauss, M., Gusev, A., Rozovskaya, O., Simpson, D., Sokovyh, V., Valiyaveetil, S., and Wind, P.: Development of the EMEP global modelling framework: Progress report, EMEP/MSC-E 7/2009, 2009.

Part I Status in 2007

CHAPTER 2

Status of transboundary pollution in 2007

Ágnes Nyíri, Michael Gauss, Anna Benedictow, Anne-Gunn Hjelbrekke, Katarina Mareckova and Robert Wankmüller

This chapter presents an overview on the status of transboundary air pollution for acidification, eutrophication and ground level ozone in Europe in 2007. It identifies the main differences in meteorological conditions, emissions and model results with respect to previous years. Combined model results and observations for acidifying and eutrophying compounds and photo-oxidants are also presented.

Evaluations of the Unified EMEP model performance have been presented in numerous EMEP reports (e.g. Fagerli and Hjellbrekke 2008, Simpson and Hjellbrekke 2008, Simpson 2006, Fagerli 2005, 2004, Fagerli et al. 2003, Simpson et al. 2003) and articles (e.g. Simpson et al. 2006a,b, Fagerli and Aas 2008, Jonson et al. 2006). There are only minor updates of the Unified EMEP model this year compared to last year and the performance is rather similar for 2007 as for 2006. Therefore, we do not discuss the Unified EMEP model performance for 2007 here. However, an evaluation for 2007 is available on the EMEP website.

All model calculations presented in this chapter are carried out with the Unified EMEP Model version rv3.1 in the extended EMEP domain (See Chapter 1.3), using HIRLAM as meteorological driver.

2.1 Meteorological conditions in 2007

The meteorological characteristics of 2007 are described based on the data that have been generated to drive the Unified EMEP model (HIRLAM).

As meteorological variability has a significant effect on the interannual changes of air concentrations and depositions, a comparison between 2007 and 2006 with respect to meteorological fields and selected results from the Unified EMEP model is presented here.

(a) Δ T2m, 2007-2006

(b) Δ precipitation, 2007-2006

Figure 2.1: Differences between 2007 and 2006. Left: Annual mean temperature at 2m [K], right: Annual precipitation [mm].

Figure 2.1(a) shows the change in annual mean temperatures from 2006 to 2007. 2007 was colder than 2006 in Scandinavia and large parts of Western Europe. It was warmer than 2006 in Eastern Europe, southeastern Europe, and the central and eastern parts of the Mediterranean. The figure is also consistent with the high temperatures over Russia reported by the Russian Institute of Hydro-Meteorological Information (meteo.ru, Bulygina et al. (2008)) and the heat in southeastern Europe manifesting itself in monthly mean temperatures from January to October 2007 being more than $1-2^{\circ}$ higher compared to same period in the year before.

In January a strong winterstorm hit northern Europe and continued along a wide path from Northeast to Southwest across central Europe (Fink et al. 2009). In about the same area, according to NOAA (van Lanen 2007), the temperature was more than 3° above normal during January-March 2007 and continued to be relatively high in April-June. Whereas opposite temperature anomalies were observed in the same area later that year, in southeastern Europe temperatures remained relatively high until August. In particular, two extreme heat waves occurred in southeastern Europe in June and July, breaking earlier records with daily maximum temperatures exceeding 40°C in some areas. This caused numerous forest fires, especially in Greece during August. In addition to the heat, the months prior to the forest fires were extremely dry in southeastern Europe (Founda and Giannakopoulos 2009).

Figure 2.1(b) shows the difference between the yearly accumulated precipitation in 2007 compared to 2006. Germany, Switzerland, southern France, western Austria, southern Romania, northern Bulgaria, southern Bosnia, Poland, Slovakia, the Baltic countries, Finland, northern and southern Sweden, western and northern Norway, and southern Denmark received a lot more rain in 2007 than in 2006. In comparison to 2006, western and central Europe received more precipitation in winter and summer, while southeastern Europe received larger amounts of precipitation from September onwards.

Temperature and precipitation have a strong influence on photochemistry and deposition and thus on pollution levels both in the air and on ground. Therefore, they are good indicators of interannual variability in meteorology that can explain parts of the changes in air pollution levels and transboundary transport of pollutants from year to year.

2.2 Emission data in 2007

In addition to meteorological variability, the other factors affecting the interannual variability of transboundary transport are changes in the emissions. The main changes in emissions in 2007 with respect to previous years are documented in the following sections.

2.2.1 Emission reporting under the LRTAP Convention in 2009

Parties to the LRTAP Convention submit air pollution emission data $(SO_x, NO_x, NH_3, CO, NMVOCs, HMs, POPs and PM)$ annually to the EMEP Centre on Emission Inventories and Projections (CEIP) and notify the LRTAP Convention secretariat thereof. The deadline for submission of 2007 data was 15 February 2009. Parties are requested to report emission inventory data using standard formats in accordance with the EMEP Reporting guidelines (UNECE (2009)).

41 of the 50 Parties (EC is not included in this statistics) to the Convention submitted inventories in 2009. Thereof 26 Parties reported emission data by the due date of 15 February 2009. Figure 2.2 indicates that 52% of the Parties reported in time and fifteen Parties submitted data after the deadline, increasing the number of submissions to 82%. This is an increase by one Party as compared to last year (Figure 2.2). 39 countries submitted main pollutants, however only 32 Parties provided PM emissions. A few Parties reported only national total emissions. Completeness and consistency of submitted data is analyzed in the EEA/CEIP Inventory review report 2009 (Mareckova et al. (2009)). Data as submitted by Parties can be accessed via the CEIP homepage at http://www.ceip.at/emission-data-webdab/2008-submissions-under-clrtap/.

Gridded data are part of the five-year reporting obligation and as such were not due in 2009. However, five Parties (Finland, Spain, Denmark, Greece and Slovakia) submitted gridded sectoral and national total emissions. Finland and Spain submitted gridded data for 2007 in the new GNFR sectors, Finland only for 2007 and Spain for the whole time series from 1990 to 2007. Denmark submitted gridded data for 2005,

Figure 2.2: Number of Parties reporting emission data to EMEP since 2000 as of 30 June 2009.

Greece and Slovakia submitted only gridded national totals, Greece for 2000 and 2005 and Slovakia for 1990, 1995, 2000 and 2005.

Independent of the reporting year, out of the 48 countries which are considered in the extended EMEP area, only 15 countries reported sectoral gridded data for year 2000 (5.4% of the extended grid area) and only 19 countries reported sectoral gridded emissions for 2005 (5.5% of the extended grid area).

Figure 2.3: Number of Parties reporting gridded sector data to EMEP as of 30 June 2009.

26 countries have not reported gridded sectoral data, neither for 2000 nor for 2005 (Belgium, Bulgaria, Czech Republic, Greece, Luxembourg, Malta, Poland, Romania, Slovakia, Slovenia, United Kingdom, Albania, Armenia, Azerbaijan, Bosnia and
Herzegovina, Georgia, Kazakhstan, Kyrgyzstan, Liechtenstein, Monaco, Montenegro, Republic of Moldova, TFY Republic of Macedonia, Russian Federation, Serbia and Turkey). However some of these countries reported gridded national total emissions. Cyprus, Hungary, Lithuania, Netherlands, Belarus, Croatia and Ukraine have not provided gridded sectoral emissions for 2000, and France, Italy and Iceland have not provided gridded sectoral data for 2005.

2.2.2 Emission data used for modelling in 2009

The emissions used for this years transboundary transport calculations with the Unified model are those provided by CEIP. These data are derived, as far as possible, from the official submissions for sectoral 2007 emissions as reported by the Parties. However, the official emission data are far from complete. Before emission data can be used by modellers, missing information has to be filled in. To gap-fill missing data CEIP applies two basic methods: a) linear extrapolation of the last five years (three as a minimum) and b) copy of previous year's emissions (data from 2006, 2005, 2003 or 2000). Gap-filled sectoral emissions are distributed over the extended EMEP grid by a base grid. The base grid defines the distribution of emissions in the extended EMEP area and was calculated by using gridded emissions if reported by countries and/or proxy data as large point sources (LPS), population data and different models if no or incomplete data had been reported by countries.

The overview information on gap-filled sectors can be found in Table 2.1. The gap-filled data are published on WebDab as "Emissions used in EMEP models": http://www.ceip.at/emission-data-webdab/emissions-used-in-emep-models/.

Emissions from international ship traffic are not included in the officially reported data. For 2007, the shipping emissions were linearly interpolated with ENTEC estimates for 2010.

This year CEIP considered for the first time the extended EMEP domain in the gap-filling and gridding process. Because of missing emissions from a number of countries in this area, MSC-W estimates from last year were used and gridded with current population data in particular countries. The population data CEIP used were compiled by IIASA.

Because of late resubmissions of corrected data from Bulgaria and Finland it was not possible to take into account the updated data in the model runs by MSC-W.

The national emission totals for 2007 in the extended EMEP domain $(132 \times 159$ grid cells), as used for the modelling, are listed in Appendix B for each individual country and area.

2.2.3 Differences between 2007 and 2006 emissions

Changes in the total antrophogenic emissions of main pollutants within the extended EMEP area from 2006 to 2007 are generally small, with averaged reductions of -2.6%

Table 2.1: Overview of gap-filling in the EMEP 2007 inventory. Cross in the table indicates that emissions in at least one sector were gap filled in the data used for EMEP/MSC-W modelling in 2007.

Parties	NOx	NMVOC	SOx	NH₃	PM _{2.5}	PMcoarse	СО
Albania	х	х	х	х	х	х	х
Armenia	х	х	х	x	х	х	х
Azerbaijan	х	x	х	x	х	х	х
Belarus		х	х		х	х	
Bosnia and Herzegovina	х	х	х	х	х	Х	х
Bulgaria					х	х	
Croatia					х	х	
Georgia	х	х	х		х	х	х
Germany					х	х	
Greece			х		х	х	
Hungary		х				х	
Iceland	х	х	х	х	х	х	х
Ireland					х	х	
Kazakhstan	х	х	х	х	х	х	х
Kyrgyzstan	х	х	х	х	х	х	х
Lithuania					х	Х	
Luxembourg					х	х	х
TFYR of Macedonia	х	х			х	Х	
Malta			х		х	х	
Republic of Moldova	х	х	Х	х	Х	Х	х
Montenegro	х	х	Х	х	Х	Х	x
Poland		х					
Romania					Х	Х	
Russian Federation	х	х	Х		Х	Х	x
Serbia	х	х	Х	х	Х	Х	Х
Slovakia					Х	Х	
Tajikistan	х	х	Х	х	х	х	х
Turkey	х	х	х	x	х	X	х
Ukraine					X	X	
Other Areas	NOX	NMVOC	SOX	NH ₃	PM _{2.5}	PMcoarse	CO
Arctic Ocean in the extended EMEP domain	X	X	X	X	X	X	X
Rest of Arai Lake in the extended EMEP domain	X	X	X	X	X	X	X
Aral Lake in the former official EMEP domain	X	x	X	X	Х	X	x
Remaining Asian Areas in the extended EMEP domain	X	X	Х	X	Х	X	Х
Remaining Asian Areas	X	X	Х	Х	Х	X	Х
Modified Remaining Asian Areas in the former official EMEP domain	х	х	х	x	х	X	x
Remaining N/E Atlantic Ocean	х	х	Х		Х	Х	х
EMEP-external Remaining North-East Atlantic	х	х	Х		Х	Х	х
Baltic Sea	х	х	Х		х	Х	х
Black Sea	х	х	Х		х	Х	х
Caspian Sea	х	х	Х	х	Х	Х	Х
Rest of Kazakhstan in the extended EMEP domain	х	x	х	x	х	х	х
Mediterranean Sea	х	х	х		х	х	х
North Sea	х	х	х		х	Х	х
North Africa	х	х	х	х	х	х	х
Rest of Russian Federation in the extended EMEP domain	x	х	х	x	х	х	х
EMEP-external part of Russian Federation	х	х	x	x	x	x	x
Rest of Turkmenistan in the extended EMEP domain	х	х	х	х	х	х	х
Turkmenistan in the former official EMEP domain	х	х	х	х	х	х	х
Rest of Uzbekistan in the extended EMEP domain	х	х	х	x	х	х	х
Uzbekistan in the former official EMEP domain	х	х	х	x	х	х	х

Figure 2.4: Percentage differences in the spatial distribution of emissions between 2007 and 2006.

for SO_x , -0.1% for NH_3 , -6.4% for NMVOCs, while for NO_x , there is an increase of 1%.

In the case of particulate matter the changes are more significant, the averaged reductions are -9.1% for $PM_{2.5}$ and -11% for PM_{coarse} . The spatial variability of these changes is illustrated in Figure 2.4, which shows the changes as percentage of 2006 emissions.

For SO_x the largest reductions in national total emissions occurred in Cyprus (-11%), Germany (-12%), Hungary (-29%), Luxembourg (-63%), Romania (-13%), Slovakia (-20%), Slovenia (-20%), Sweden (-15%), Switzerland (-22%) and the United Kingdom (-13%). SO_x emissions increase significantly in Estonia (25%) and the Former Yugoslav Republic of Macedonia (15%).

For NO_x the largest reductions occurred in Bulgaria (-24%), Luxembourg (-51%) and Portugal (-13%). NO_x emissions increased in Cyprus (12%), Estonia (13%), Greece (18%), Lithuania (13%), Serbia (156%), the Former Yugoslav Republic of Macedonia (16%) and Ukraine (50%).

 NH_3 emissions decreased most in Denmark (-16%), Greece (-11%), Hungary (-13%), Luxembourg (-24%), Portugal (-20%). Increases of 105% and 22% occurred in Malta and Slovakia, respectively.

Significant reductions in NMVOC emissions occurred in Bulgaria (-48%), Greece (-30%), Hungary (-16%), Malta (-43%), Poland (-35%), Russian Federation (-14%), the Former Yugoslav Republic of Macedonia (-41%), while NMVOC emissions increased in Belarus (23%), Georgia (64%) and Ukraine (38%).

For $PM_{2.5}$ and PM_{coarse} the largest reductions occurred in Belgium (-16% and -12%, respectively), Croatia (-47% and -58%), Hungary (-27% and -24%), Italy (-10% and -33%), Russian Federation (-27% and -34%) and Slovakia (-11% and -37%). Only $PM_{2.5}$ was significantly reduced in Sweden (11%) and the United Kingdom (-14%). Both $PM_{2.5}$ and PM_{coarse} increased in Cyprus (320% and 293%, respectively), Estonia (33% and 74%) and Malta (28% and 248%). $PM_{2.5}$ increased significantly in Denmark (18%) and Portugal (11%), while PM_{coarse} emissions doubled in Ireland.

As mentioned above, because of missing reported emissions from the new EECCA countries, the 2006 estimates for sectoral emissions from anthropogenic sources were used also this year. These emissions were, however, regridded using current population data compiled by IIASA. As Figure 2.4 shows, the new gridding led to significant changes in the spatial distribution of emissions, which are also reflected in the model results.

2.3 Main changes in concentrations, depositions and transboundary fluxes in 2007

The unusually high temperatures in January 2007 (Figure 2.5(a)) together with large amounts of precipitation in central and eastern Europe (Figure 2.5(b)) and western

Figure 2.5: Differences between 2007 and 2006 for January. Left: Monthly mean temperature at 2m [K], middle: Monthly precipitation [mm], right: Monthly mean PM_{10} concentration [μ g m⁻³].

Figure 2.6: Differences between 2007 and 2006 for July. Left: Monthly mean temperature at 2m [K], middle: Monthly precipitation [mm], right: Monthly mean of daily maximum ozone [ppb].

Russia resulted in, e.g., rather low PM_{10} values for the same area as visible from the Unified EMEP model results shown in Figure 2.5(c). This finding is also supported by observations (EMEP CCC & MSC-W 2009).

By contrast, in March, high PM values were observed in central Europe related to dry conditions, and in late March a dust event was identified that originated from extremely dry areas in southern Ukraine and the northern shore of the Black Sea (Birmili et al. 2008).

For ozone, the levels in 2007 compared to 2006 are lower in central Europe and northern Europe. According to the European Environment Agency (EEA 2008) the summer ozone levels of 2007 were among the lowest in the past decade. However, during the heat wave period over eastern Europe in July the ozone air pollution was more severe than in the same period in 2006. This is shown in Figure 2.6 visualizing monthly mean temperatures and total precipitation for July 2007 along with Unified

EMEP model results for surface ozone.

Changes in transboundary fluxes, air concentrations and depositions from year to year are driven by changes in emissions and by meteorological variability. Generally, over the last decade the interannual variability in emissions has been small, and changes in air quality from year to year are mostly driven by meteorological variability.

A direct comparison of the source-receptor calculation for 2007 with those made for earlier years is not straightforward as the meteorological driver has changed from PARLAM-PS to HIRLAM. The change from 2006 to 2007 values (as reported last year and this year, respectively), is thus a result of changes in emissions, changes in meteorology, and of changing the numerical weather prediction model chosen to drive the Unified EMEP Model.

Selected source-receptor relationships have been recalculated for 2006 with the same meteorological driver as is used for 2007, in order to isolate the combined effect of emission changes and meterorological variability (see Chapter 6 for discussion).

The relatively large differences between 2006 and 2007 regarding key meteorological parameters such as temperature and precipitation do have a bearing on long-range transport of pollutants and thus the source-receptor analyses presented in this report. As will be shown in Chapter 6, the differences seen in the source-receptor calculations are rather large for some countries. For example, the high amount of precipitation over the North Sea areas has likely contributed to the pronounced reduction in imported oxidized sulphur deposited in Scandinavia in 2007.

The differences in meteorology also explain why changes in deposition differ from changes in emissions. For instance, in the EU27 area total sulphur emissions decreased by 4.9% from 2006 to 2007, while the deposition of oxidized sulphur was only 3.3% smaller in 2007 compared to 2006, indicating that a smaller fraction of the total emission was exported. This may be connected to more precipitation inside the area in 2007, but also to chemical effects. The somewhat cooler summer conditions over large parts of Europe (with a notable exception in southeastern Europe) contributed to the large change in area-averaged SOMO35 in the EU27 area, amounting to -12.4%. By comparison, NOx emissions and VOC emissions decreased by 3.2% and 8.2%, respectively, in the same area. In this context it has to be noted, however, that the relation between ozone and its precursors is highly non-linear.

When considering the entire (extended) EMEP area, changes in meteorology average out to a larger extent. The deposition of oxidized sulphur decreased from 8307 Gg in 2006 to 8069 Gg in 2007, or by 2.9%, which is almost equal to the emission change. The total deposition of oxidized nitrogen decreased from 3752 Gg to 3714 Gg (-1.0%) and that of reduced nitrogen from 4618 Gg to 4521 Gg (-2.1%). The area-averaged SOMO35 decreased by 4.3% from 2006 to 2007.

2.4 Combined model results and observations

This year, for the first time, the operational Unified EMEP model calculations are based on meteorology from the HIRLAM model. The meteorological fields have been interpolated from spherical coordinates with a resolution of $0.2^{\circ} \times 0.2^{\circ}$ to the polar-stereographic 50×50 km² grid of EMEP. The model domain was extended to include 4 new EECCA countries last year, and they are now included as a part of the operational model runs.

Test runs with HIRLAM meteorology and the evaluation of results for 2006 were presented in last year's EMEP Report 1/2008 (Fagerli et al. 2008). Results from model runs using different meteorological drivers were evaluated against measurements and the performances of the different model setups were compared. In general it was found that model results using the HIRLAM meteorological driver compared better to observations than model results using the PARLAM-PS meteorology.

2.4.1 Acidification and eutrophication

In this section, we present the 'best estimates' for air concentrations of SO_2 , SO_4^{2-} , $NH_3+NH_4^+$ and $HNO_3+NO_3^-$ as well as concentrations of oxidized sulphur, oxidized nitrogen and reduced nitrogen in precipitation. The 'best estimates' have been created by using a combination of model results and observations from the EMEP network for 2007. For all measurement points, the difference between the measured value at that point and the modelled value in the corresponding grid cell is calculated. This difference is interpolated spatially using radial basis functions, giving a continuous two-dimensional function describing the difference at any point within the modelled grid. For the interpolated normalized differences (observations-model/(observations+model)), positive values show where the model underpredict the values, whilst negative values show where the model overpredict values. The combined maps are derived by adjusting the model results with the interpolated differences, giving large weight to the observed values close to stations, and using the modelled values in areas with no observations. The range of influence of the measured values depends on the component, and has been set to 300 km for $NH_3+NH_4^+$ and $HNO_3+NO_3^-$ in air, and 500 km for all other components. For each of the components, we present four different figures, visualizing the different steps of the procedure (Figures 2.7 to 2.9). In general, there is good agreement between model results and measurements for 2007 as for previous years. Thus, the combined results are rather similar to the model results. Please note that the evaluation of the performance of the EMEP Unified model for 2007 is not included in this chapter, but is available on the EMEP website.

2.4.2 Ozone and NO₂

'Best estimates' have also been calculated for air concentrations of ozone and NO_2 , using a combination of model results and observations from the EMEP network for

Figure 2.7: Yearly averaged SO₂ (a)-(d) and SO₄²⁻ (e)-(h) concentrations in air $[\mu g(S) m^{-3}]$ for 2007.

Figure 2.8: Yearly averaged $\text{HNO}_3 + \text{NO}_3^{-1}$ (a)-(d) and $\text{NH}_3 + \text{NH}_4^+$ (e)-(h) concentrations in air $[\mu g(N) \text{ m}^{-3}]$ for 2007.

Figure 2.9: Yearly averaged oxidized nitrogen (a)-(d) and reduced nitrogen (e)-(h) concentrations in precipitation $[\mu g(N)l^{-1}]$ for 2007.

Figure 2.10: Yearly averaged sulphur concentrations in precipitation $[\mu g(S)l^{-1}]$ for 2007.

2007. The technique is the same as described in section 2.4.1.

In general, there is very good agreement regarding ozone between model results and measurements for 2007. Thus, the maps of combined results look very similar to those of the model results. We thus show only the combined results and the normalized error in Figure 2.11. For the maps of normalized error, positive values denote model underprediction, and negative values model overprediction. While the error is somewhat larger for NO_2 (bottom panels of Figure 2.11 the overall agreement is still satisfactory. The model tends to underestimate NO_2 in the south, especially over Spain, Italy, and Greece, and overestimate it in the north, e.g. Scandinavia.

A detailed evaluation of the EMEP Unified Model in terms of ozone and NO_2 for 2007 is available on the EMEP website.

2.5 Exceedances of critical loads

The calculated exceedances of critical loads and the ecosystem areas at risk in 2007 are presented in Figure 2.12 both for Europe in the old EMEP domain (a)-(d) and

Figure 2.11: Yearly averaged Ozone and NO_2 for 2007. (a)+(b): daily mean ozone [ppb], (c)+(d): daily maximum ozone [ppb], (e)+(f): daily mean NO_2 [μ g(N) m⁻³].

Figure 2.12: Exceedances of critical loads [eq $h^{-1} yr^{-1}$] and % ecosystem areas at risk for 2007 in Europe (a)-(d) and in EECCA countries (e)-(h).

for EECCA countries in the extended EMEP domain (e)-(h). The calculations for Europe in the old EMEP domain are based on official critical load data as decribed in Hettelingh et al. (2008), while those for EECCA countries are based on non-official critical load data by CCE's background database (Reinds et al. 2008).

References

- Birmili, W., Schepanski, K., Ansmann, A., Spindler, G., Tegen, I., Wehner, B., Nowak, A., Reimer, E., Mattis, I., Muller, K., Bruggemann, E., Gnauk, T., Herrmann, H., Wiedensohler, A., Althausen, D., Schladitz, A., Tuch, T., and Loschau, G.: A case of extreme particulate matter concentrations over Central Europe caused by dust emitted over the southern Ukraine, Atmos. Chem. and Physics, 8, 997–1016, 2008.
- Bulygina, O., Korshunova, N., and Razuvaev, V.: Weather over the territory of the Russian Federation in 2007, russian Institute of Hydro-Meteorological Information, Obninsk, http://www.meteo.ru/english/climate/cl2007e. php, 2008.
- EEA: EEA Technical report No 5/2008: Air pollution by ozone across Europe during summer 2007, european Environmental Agency(EEA), Copenhagen, http:// www.eea.europa.eu/publications/technical_report_2008_5, 2008.
- EMEP CCC & MSC-W: Transboundary Particulate Matter in Europe, Status report 4/2009, EMEP Report 4/2009, The Norwegian Institute for Air Research (NILU), Kjeller, Norway, 2009.
- Fagerli, H.: Air concentrations and depositions of acidifying and euthrophying components, status 2002, in Transboundary acidification, eutrophication and ground level ozone in Europe. EMEP Status Report 1/2004, pp. 77–107, The Norwegian Meteorological Institute, Oslo, Norway, 2004.
- Fagerli, H.: Acidifying and eutrophying components, status in 2003, in In Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe. EMEP Status Report 1/2005, pp. 9–30, The Norwegian Meteorological Institute, Oslo, Norway, 2005.
- Fagerli, H. and Aas, W.: Trends of nitrogen in air and precipitation: Model results and observations at EMEP sites in Europe, 1980-2003, Environ. Poll., 154, 448–461, 2008.
- Fagerli, H. and Hjellbrekke, A.: Acidification and Eutrophication, in Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe in 2006. EMEP Status Report 1/2008, pp. 41–56, The Norwegian Meteorological Institute, Oslo, Norway, 2008.

- Fagerli, H., Simpson, D., and Aas, W.: Model performance for sulphur and nitrogen compounds for the period 1980 to 2000, in Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe. EMEP Status Report 1/2003, Part II Unified EMEP Model Performance, edited by L. Tarrasón, pp. 1–66, The Norwegian Meteorological Institute, Oslo, Norway, 2003.
- Fagerli, H., Wind, P., Gauss, M., Nyíri, A., Simpson, D., and Tsyro, S.: Improved resolution in EMEP models, in Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe in 2006. EMEP Status Report 1/2008, pp. 89–104, The Norwegian Meteorological Institute, Oslo, Norway, 2008.
- Fink, A. H., Brücher, T., Ermert, V., Krüger, A., and Pinto, J. G.: The European storm Kyrill in January 2007: synoptic evolution, meteorological impacts and some considerations with respect to climate change, Nat. Hazards Earth Syst. Sci., 9, 405–423, http://www.nat-hazards-earth-syst-sci.net/9/405/2009/, 2009.
- Founda, D. and Giannakopoulos, C.: The exceptionally hot summer of 2007 in Athens, Greece A typical summer in the future climate?, Global and Planetary Change, 67, 227–236, 2009.
- Hettelingh, J.-P., Posch, M., and Slootweg, J.: Critical load, dynamic modelling and impact assessments in Europe, Tech. Rep. Status Report 2008, Bilthoven, Netherlands, Coordination Center for Effects, 2008.
- Jonson, J., Simpson, D., Fagerli, H., and Solberg, S.: Can we explain the trends in European ozone levels?, Atmos. Chem. and Physics, 6, 51–66, sRef-ID: 1680-7324/acp/2006-6-51, 2006.
- Mareckova, K., Wankmüller, R., Wiesser, M., Poupa, S., Anderl, M., and Muik, B.: Inventory review 2009. Emission data reported under the LRTAP Convention and NEC Directive. Stage 1 and 2 review. Status of gridded data, EMEP/CEIP 1/2009, EEA/CEIP Vienna, 2009.
- Reinds, G. J., Posch, M., De Vries, W., Slootweg, J., and Hettelingh, J. P.: Critical loads of sulphur and nitrogen for terrestrial ecosystems in Europe and Northern Asia using different soil chemical criteria, Water, Air and Soil Pollution, 193, 269–287, 2008.
- Simpson, D.: Ozone, in Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe since 1990 to 2004, EMEP Status Report 1/2006, pp. 53–62, The Norwegian Meteorological Institute, Oslo, Norway, 2006.
- Simpson, D. and Hjellbrekke, A.: Photo-oxidants: validation and combined maps, in In Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe

in 2006. EMEP Status Report 1/2008, pp. 53–66, The Norwegian Meteorological Institute, Oslo, Norway, 2008.

- Simpson, D., Fagerli, H., Solberg, S., and Aas, W.: Photo-oxidants, in Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe. EMEP Status Report 1/2003, Part II Unified EMEP Model Performance, edited by L. Tarrasón, pp. 67–104, The Norwegian Meteorological Institute, Oslo, Norway, 2003.
- Simpson, D., Butterbach-Bahl, K., Fagerli, H., Kesik, M., Skiba, U., and Tang, S.: Deposition and Emissions of Reactive Nitrogen over European Forests: A Modelling Study, Atmos. Environ., 40, 5712–5726, 2006a.
- Simpson, D., Fagerli, H., Hellsten, S., Knulst, J., and Westling, O.: Comparison of modelled and monitored deposition fluxes of sulphur and nitrogen to ICP-forest sites in Europe, Biogeosciences, 3, 337–355, 2006b.
- UNECE: Guidelines for reporting emission data under the Convention on Longrange Transboundary Air Pollution, Tech. Rep. ECE/EB.AIR/97, UNECE, http://www.ceip.at/fileadmin/inhalte/emep/reporting_ 2009/Rep_Guidelines_ECE_EB_AIR_97_e.pdf, 2009.
- van Lanen, H. A.: The Netherlands in a drought again (2 May 2007), wageningen University, the Netherlands, http://www.geo.uio.no/edc/downloads/ the_early_2007_drought_in_the_netherlands_2may2007.pdf, 2007.

CHAPTER 3

Status and new development in the EECCA region

Wenche Aas, Katarina Mareckova and Ágnes Nyíri

Most of the twelve EECCA (Eastern Europe, Caucasus and Central Asia) countries are Parties to the Convention (CLRTAP), but only few of these Parties have yet signed the protocols thereunder, though many are in process to do so. There is a strong need to improve the official reporting on emissions as well as measurements from the EECCA countries, and this has been a priority area for EMEP the last years. This is also reflected in the EMEP work plan (ECE/EB.AIR/GE.1/2008/2), which clearly specifies the need for capacity-building and guidance to develop national actions needed for implementing the protocol obligations.

3.1 Emission inventories and emission reporting in EECCA countries

3.1.1 Status of reporting

The reporting of CLRTAP inventories by EECCA countries to the Convention is rather limited. In recent years only Belarus, Moldova, Russian Federation and Ukraine, reported more or less regularly emission inventories to the Convention. Georgia has submitted inventories of main pollutants, Total Suspended Particles (TSP) and Persistent Organic Pollutants (POPs) in 2008 and 2009, Kyrgyzstan provided main pollutant emissions from stationary sources (except NH₃), and Azerbaijan submitted some information on emissions for stationary sources in 2009. No data have been provided by Armenia and Kazakhstan. In general the reported inventories are not complete and

informative inventory reports (IIRs) are not provided either. There are historical data in WebDab reported by these countries between 1990-2000, but it seems to be no link between the historical data and emissions reported in the last 2 years (Table 3.1).

PARTY	SO2 NOx CO NH3 NMVOC	Cd,Hg, Pb	additional HM	PM2.5, PM10	TSP	POPs (PAH DIOX HCB)	Projecti ons	comments
Armenia								SO2, CO, NO2, national totals only from stationary sources
Azerbaijan	2000-2007							Reported only National Totals of stationary sources in Word- file;
Belarus	2006, 2007	1990-1995, 2006, 2007	2006, 2007	2006, 2007	2006, 2007	2006, 2007; DIOX 2004- 2005		HM 1990-1995 are not in NFR
Georgia	2000 - 2007				2000 - 2007	2000 - 2007		National totals from 2000 to 2007 in Notification form; Resubmission of 2006 and 2007 data in new format, but without national totals; HCB is not reported
Kazakhstan								
Kyrgyzstan	1990, 1995-2005					-		Energy sector only, without NH3
Moldova		2006					2010, 2015, 2020	
Russian Federation	2006, 2007	2006, 2007		2006, 2007	2006, 2007			Projections in russian Word file;
Ukraine	2006, 2007	2006, 2007	2006, 2007		2006, 2007			

Table 3.1: Overview of inventories submitted to CEIP by EECCA countries during 2008 and 2009.

Kazakhstan has experienced inventory experts which would be able to compile and report the CLRTAP inventory, but legal framework in the country is not provided. In Kyrgyzstan, Georgia, Azerbaijan and Armenia experts do not seem to be familiar with emission reporting under CLRTAP. In Belarus and Ukraine inventories are reported, but a QA/QC system seem not to be in place. The Russian Federation reports emissions only for "EMEP Russia" but not for the whole country or the extended EMEP area. In previous years Belarus, the Russian Federation and Ukraine have reported sectoral gridded emissions (Belarus for 2005, the Russian Federation for 1990, 1995, 1996 and 2000 and Ukraine 2002 and 2005). Armenia and Moldova reported large point source (LPS) emissions (Armenia 1997 and Moldova 1996). However, in 2008 and 2009 no gridded emissions or LPS data has been provided by the EECCA countries.

3.1.2 TF HTAP Regional workshop in St. Petersburg

The Task Force on Hemispheric Transport of Air Pollution (TF HTAP) organized a regional workshop "Focusing on Eastern Europe, Central Asia, and the Arctic" from 1–3 April 2009 in St. Petersburg, Russia. The agenda of the workshop is available at http://www.htap.org/meetings/2009/2009_04/agenda. htm. Two days of the workshop were planned to deal with emission inventories and

CHAPTER 3. EECCA COUNTRIES

projections in the EECCA and SEE (South-East Europe) regions. The workshop was organized side to side with the "12th All-Russian Conference on Regulatorymethodological, Technical and Information Support of the Air Protection Activity" as part of the "Atmosphere 2009" conference. Up to 90 experts from the former Soviet Union countries participated. CEIP was invited to provide training to the Parties on reporting obligations, reporting formats and requirements for national inventory systems. CEIP individually consulted experts at the meeting using this opportunity to obtain additional information on the situation in individual EECCA countries.

Although the main problem in EECCA region seems to be awareness of policymakers (followed by lack of legal and institutional framework and limited budget), the provision of emission data and quality of reported data could be partly improved by regular capacity building of EECCA inventory experts and small projects focusing on; a) establish institutional and procedural arrangements and b) assistance with inventory compilation for selected years (e.g. 2000, 2005, 2010). The experience shows, through UNDP, UNEP programmes (http://ncsp.undp.org/index.cfm, http:// www.rec.org/REC/Programs/UNDP-GHGInventories/), that these countries will hardly develop national inventory systems and start with regular reporting of emission inventories without external support. Parts of the problems listed above are to be managed on the country level, however, national experts might welcome external support as well. EECCA experts expressed interest in regional capacity building workshops and in country focused support (e.g. country visits and/or bilateral projects).

3.1.3 Areas for improvement

Areas for improvement where EMEP might consider to provide assistance:

- Awareness of national stakeholders.
- Legal, institutional and procedural framework in the countries.
- Identification of data providers.
- Developing cadastre of emission sources.
- Environmental statistics and guidance on how to use national statistical data in inventory compilation.
- Missing inventory software tools (e.g. like Collecter, Copert).
- Technical capacity of inventory experts, transition of technical knowledge in areas; implementation of EMEP/EEA inventory guidebook (EMEP/EEA 2009), selection of methods and emission factors (EFs), uncertainty assessment of activity data (AD) and EFs, sensitivity analysis, Key Category Analyses (KCA) and methods for filling data gaps.

3.2 Status and progress regarding measurements

Russia and Belarus are the only EECCA countries that have had regular monitoring in EMEP for several years. However, the measurement program is far from complete. At the four Russian sites that reported data for 2007, only one site has air measurements in addition to precipitation, and none of them measure ozone or particulate matter. The one site in Belarus has only measurements of main components in precipitation. The last couple of years, EMEP level 1 sites have been established in Kazakhstan, Moldova, Armenia and Georgia with support from the Norwegian Ministry of Foreign Affairs and from the UNECE project CAPACT (http: //www.unece.org/energy/capact/). Furthermore, Ukraine has for several years planned to establish a site as a contribution in kind to UNECE. There are also sites established that are not formally connected to EMEP, e.g. there is one site established in Kyrgyzstan (Teplokluchenka) measuring aerosol properties with support from the Atmospheric Brown Cloud (ABC) programme (Ramanathan and Crutzen (2003)). The Tiksi site in the Russian Arctic is being reestablished with an extensive measurement program in cooperation with research groups in Finland and Canada and the AMAP (Arctic Monitoring and Assessment) programme. Presently very little data has been reported to CCC from these new sites. Some preliminary results from Moldova, Georgia and Armenia have been submitted, and it is expected that these three sites will report 2008 data at the official reporting deadline 31th of July 2009. For Kazakhstan the measurement at the EMEP site at Borovoye did not start as planned in autumn 2007 due to various practical and financial problems. CCC revisited the site and laboratory in spring 2009 for further training and necessary reparations and calibrations, thus the measurements are now up and running. It is evident that further training in especially laboratory practice is needed for those new EMEP sites to improve the data quality and reporting. CCC will therefore conduct a training course especially devoted to these laboratories during the winter 2009/2010.

The UNECE Working Group on Environmental Monitoring and Assessment (WGEMA) has developed a guideline for developing national strategies for air quality monitoring (ECE/CEP/AC.10/2009/6). This includes all the different levels of air quality monitoring needed - urban, rural and global (i.e. EU, EMEP, WMO and WHO guidelines), though a special focus is on urban monitoring. To ensure that the national monitoring networks are cost efficient and scientifically sound, it is important to see this WGEMA guideline together with the new EMEP strategy for 2010-2019 since these complement each other.

3.3 Modelled pollution levels in EECCA countries

For the first time this year, pollution levels for all the countries, including the 4 new countries in EECCA (Kyrgyzstan or the Kyrgyz Republic, Tajikistan, Turkmenistan and Uzbekistan), are calculated in one consistent model run. The model version and

Figure 3.1: Exceedances of critical loads [eq $h^{-1} yr^{-1}$] and percentage of ecosystem areas at risk [%] in 2006 and 2007 in EECCA countries.

meteorological driver is thus the same as described in Chapter 2, and modelled concentrations and depositions for the full (extended) model domain are presented there.

There are still large uncertainties associated to the model results in EECCA countries, primarily because of the emission data. Especially for those countries and areas which were first included in the modelling last year, there is very little background information available on emission sources.

The calculated exceedances of critical loads and the percentage of ecosystem areas at risk in 2006 and 2007 for EECCA countries are presented in Figure 3.1. The 2006 results are the ones presented last year in Tarrasón et al. (2008). Map plots of exceedances and areas at risk for 2007 are presented in Figure 2.12 in Chapter 2. The calculations of exceedances for EECCA countries are based on non-official critical load data from CCE's background database (Reinds et al. 2008) for both years.

The model results for both 2006 and 2007 indicate that acidification in the EECCA countries is a problem only in identified hot spots in the vicinity of large power emissions, while eutrophication is a widespread problem and considerable exceedances are estimated for the critical loads of eutrophication in this area.

As indicated in Figure 3.1, for most EECCA countries the calculated exceedances do not vary much between 2006 and 2007. An exception is Kyrgyzstan, where exceedances of critical loads and the percentage of area at risk of acidification decrease significantly from 2006 to 2007. It was discussed in Section 2.2.3 that estimated emission totals in Kyrgyzstan and its neighbouring countries are kept basically unchanged from 2006 to 2007, while the spatial distribution of emissions has been improved by regridding with available proxy data. It is primarily the new spatial distribution that led to the above change in the calculated exceedances for Kyrgyzstan. This illustrates the importance of the improvements in emission data inventories for the EECCA countries in order to decrease uncertainties in modelled pollution levels in this area. In lack of observational data from EECCA countries it is also difficult to evaluate the performance of the EMEP model in the extended domain.

References

- EMEP/EEA: EMEP/EEA air pollutant emission inventory guidebook -2009, Technical report/2009, European Environment Agency, Copenhagen, Denmark, EEA, http://www.eea.europa.eu/publications/ emep-eea-emission-inventory-guidebook-2009, 2009.
- Ramanathan, V. and Crutzen, P. J.: New Directions: Atmospheric Brown "Clouds", Atmos. Environ., 37, 4033–4035, 2003.
- Reinds, G. J., Posch, M., De Vries, W., Slootweg, J., and Hettelingh, J. P.: Critical loads of sulphur and nitrogen for terrestrial ecosystems in Europe and Northern Asia using different soil chemical criteria, Water, Air and Soil Pollution, 193, 269–287, 2008.
- Tarrasón, L., Fagerli, H., Gauss, M., Nyíri, A., Simpson, D., Tsyro, S., and Aas, W.: S, N and O3 in EECCA countries, in Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe in 2006. EMEP Status Report 1/2008, pp. 67–86, The Norwegian Meteorological Institute, Oslo, Norway, 2008.

Part II

Source receptor matrices

CHAPTER 4

Trends in source allocation of pollutants

Valiyaveetil S. Semeena, Ágnes Nyíri, Alvaro Valdebenito, David Simpson and Hilde Fagerli

EMEP has been calculating source-receptor (SR) matrices almost since its inception with the Lagrangian model. An investigation of SR matrices from the Unified Eulerian model was conducted by Wind et al. (2004). Source-receptor runs were carried out to study the trends in source allocation of pollutants and transboundary fluxes for the period 1996-2000 (van Loon et al. 2005) as part of the EU CAFE-BASELINE project (Amann et al. 2004). van Loon et al. (2005) used the projected emission of CLE2010 for their study of the entire period 1996-2000. The effect of meteorology for source allocation of pollutants was the main aim of that study and it was found that transboundary contributions depended on the pollutant considered. Interannual variability was found to be 10-20%, which implied that meteorological variability cannot be neglected in integrated assessment modelling.

This chapter discusses the trends carried out for ten meteorological years, 1997 to 2006, using the emissions of corresponding years. An overview of the average indigenous and transboundary fluxes, the trends in deposition versus emission and the meteorological variability in deposition of nitrogen and sulphur compounds are analysed here.

This study will provide information about the trends in source allocation of pollutants, as well as insight into the trends in the ratio of deposition to emissions for different pollutants. Information about the transboundary contribution of pollutants is very important in the context of reduction in emissions, so special effort is made in this study to understand this transboundary versus indigenous contribution of pollutants and their interannual variability.

4.1 Introduction and methodology

Source-receptor matrices give the change in various pollution levels in each receptor country resulting from a change in anthropogenic emissions from each emitter country. These matrices are generated by reducing the emissions for each emitter of one or more precursors by a given percentage. A 15% reduction is assumed in this study. The resulting output fields are then compared with the base simulation, i.e., a simulation without any emission reduction. The 15% reduction is sufficient to give a clear signal, but small enough that the chemical conditions are kept as close to the base-case as possible, as seen in Wind et al. (2004). This study also showed that the consequences of an emission change around 15% by several countries can be obtained by simply adding the changes caused by the individual countries. The differences due to the effect of nonlinear chemical climate are very small and can be neglected at this level.

SR calculations presented here involve changes in emissions of SO_x , NH_3 , NMVOC, NO_x and PPM. Since the emitted substances undergo chemical reactions when released to the atmosphere, SR matrices are in principal required for each pollutant separately. Since primary particulate matter (PPM) are assumed chemically inert, they will not interact with any of the other components in the model, thus the effect of reduction in emissions of PPM can be computed together with a change in the emissions of any of the other pollutants. The number of simulations per emitter country is then four. For one set of SR matrices (i.e., one meteorological year and set of emissions for Europe) more than 200 different simulations are needed (four set of pollutants per emitter country for 53 countries plus the 5 seas, and natural marine emissions, volcanic sources and boundary and initial components). For this report ten such SR sets have been produced for the years 1997 to 2006 with emissions of respective years. On the fastest available platform, each simulation takes between 6 and 7 hours using 32 processors.

For all the computations discussed in this chapter, model version rv3.1 was used. PARLAM-PS (Parallel version of HIRLAM) meteorology with 50×50 km² horizontal resolution and 20 terrain following levels in sigma coordinate is used as the meteorological driver for all the years. The PARLAM-PS meteorological data are archived over many years and are carefully checked and documented (Benedictow 2003).

An analysis of the general trend of depositions of oxidised sulphur, oxidised nitrogen and reduced nitrogen for these 10 years are explained in the section 4.3. Transboundary contribution to each country is analysed in section 4.3.1. The chapter is concluded with main findings of this study.

4.2 Emissions used in SR trend runs

The emission data used for the SR runs which are discussed in this chapter are somewhat different to those which were applied for modelling in previous years. A consistent emission data set was produced for the period of 1997-2005, which combined EMEP expert estimates for national and sector total emissions with a common spatial $(50 \times 50 \text{ km}^2)$ distribution from the 2005 emission database. The latter was chosen as the spatial allocation data for 2005 are based on more reliable and more complete proxy data than those available in previous years. 2006 emissions were not re-gridded, as the spatial distribution of the official gridded data for 2006 is the same as that of 2005 over most of the EMEP domain, except for a few countries (Tarrasón et al. (2008)).

Beside regridding of emissions, a few more modifications were also necessary. The first year when emission data were given separately for Serbia and Montenegro as independent countries was in 2005. In order to study the trends of SR relationships for these two countries, we allocated emissions separately to both of them for the years previous to 2005 by sharing the emissions given for Serbia-Montenegro between the two countries in the same ratio as in 2005.

Until the year 2000, particulate matter (PM) emissions were not included in the EMEP emission database. Emissions of fine and coarse particulate matter were thus estimated for this SR trend study. We have derived $PM_{2.5}$ and PM_{coarse} emissions for the years 1997-1999 for each country based on the available emission data for other pollutants. For each country we used the 2005 emissions to calculate the ratio of SO_x and $PM_{2.5}$ emissions from SNAP sector S1, the ratios of NO_x and $PM_{2.5}$ emissions from SNAP sector S1, the ratios of NO_x and $PM_{2.5}$ emissions from SNAP sector S1. In addition, the ratio of $PM_{2.5}$ and PM_{10} emissions were calculated in each sector. These ratios together with the sectoral emission data for the other pollutants, such as SO_x from S1, NO_x from S2-S9 and NH_3 from S10, were used to estimate the unavailable emissions of fine and coarse particulate matter.

The most restrictive assumption in the above described method is that the relative magnitudes of sectoral emissions of PM and the three main pollutants which are used in the estimation are the same in years 1997-1999 as in 2005. This approach might not be correct for each country, hence results for particulate matter SR relationships in 1997-1999 should be treated with caution. As mentioned before, primary particles are assumed inert and they do not interact with any other components in the model. Therefore, SR relationships for other components than PM will not be influenced by this assumption.

Similar methods were used to allocate PM emissions in the Asian areas (ASI) and North Africa (NOA), where emission estimates of particulate matter were not available for any years. Therefore, we applied the ratios calculated for the Russian Federation in the estimation of PM emissions from ASI and NOA.

Overview tables of the annual national emissions used for the SR trend studies are presented in Appendix A. Normally, the national total emissions do not vary much between adjoining years. However, there were significant changes in official estimates of national emissions for some countries between 2005 and 2006, which are also reflected in the SR trend results. The most significant differences were pointed out and explained in Tarrasón et al. (2008).

The first year for which emission data were compiled under the responsibility of the EMEP Centre on Emission Inventories and Projections (CEIP) was 2006. For previous

years the reported emission data from EECCA and South-Eastern European countries went through several replacements based on estimates in Cofala et al. (2006) which in many cases led to changes in national totals (Tarrasón et al. 2007). Such replacements were not applied for the 2006 reported data. For that year CEIP only gap-filled sector data where reported emissions were incomplete.

Emissions from international ship traffic are not included in the officially reported data. Prior to 2006 these were estimated using ENTEC ship emission data for 2000 with an increase of approximately 2.5% every year for each pollutant over each sea area (Cofala et al. 2007). For 2006, however, a linear interpolation with ENTEC estimates for 2010 was applied in order to derive the emissions for shipping. For the Baltic Sea and North Sea this resulted in 8% lower emission levels for SO_x in 2006 than in 2005. For the North-East Atlantic Ocean, Mediterranean Sea and Black Sea SO_x emissions increased from 2005 to 2006, but with lower percentage than in previous years. Also NO_x and PM emission estimates increased less from 2005 to 2006 than previously.

4.3 Trends in source allocation of pollutants

In this section an analysis of the trends in deposition of oxidised sulphur (SO_x) , oxidised nitrogen (OXN) and reduced nitrogen (RDN) for individual countries are given with respect to the emissions. Since the PM emission data is not consistent over the years, such an exercise for PMs is not considered in this section.

Reported upward trends in emissions were mostly in Eastern European countries. Austria (NO_x), Portugal and Spain (both NH₃) were the only ones in Western Europe. There is a large reduction in emission of SO_x, NO_x and NH₃ from the largest emitters in the western Europe: France, Germany, Italy and United Kingdom. The largest percentage reduction in SO_x emissions is in Latvia (92%). For Georgia there is a 123% increase in SO_x emission in the year 2006 compared to 1997. The largest reduction (52%) in reported NH₃ emissions has taken place in Ukraine (see table in Appendix A), although this may be due to the discrepancy in the reported emission data (see section 4.2). In general, whilst the land emissions have been reduced considerably, the sea emissions increased with ~ 20% (see section 4.2).

In general, the total emission of SO_x from Europe has decreased by 28%, NO_x by 7.5% and NH_3 by 8% (Figure 4.1) from 1997 to 2006. On a global scale, emission and deposition changes should balance one another, but due to non-linearities (e.g. Fagerli and Aas 2008) or due to transboundary contributions, this often is not the case for individual countries. One might expect this notion to be most valid for large countries with large emissions and low emitting neighbouring countries. Similarly, smaller countries with lower emissions can have direct or opposite relations for deposition to emissions, depending on their neighbours as well as the meteorological conditions. The steep reduction in deposition of RDN from 2005 to 2006 (Figure 4.1) is a reflection of NH_3 emission reduction mainly from Ukraine in this period (see table in Appendix A), which can be due to the discrepancy in the reported emission data (see section 4.2).

Total Emission of S and N in SO_2 , NO_2 and NH_3

Figure 4.1: Total (a) Emissions of SO_2 , NO_2 , NH_3 and (b) Depositions of SO_x , OXN and RDN for the whole of Europe for the period 1997-2006. The left axis is for NO_2 (OXN), NH_3 (RDN) and the right axis is for SO_2 (SO_x) respectively in both (a) and (b).

The ratios of total deposition to total emissions for SO_x , OXN and RDN of the respective years for each country/area are shown in Figures 4.2–4.4. The slope of the curves are calculated in order to illustrate trends. Slopes close to zero indicate that deposition trends generally follow emissions. A positive value for the slope indicates that deposition is increasing relative to emissions. This can happen for several reasons: (a) deposition is increasing while emission remains about the same, (b) deposition remains constant when emission decreases, or in an extreme case, (c) deposition increases while emission are reduced. A negative slope indicates the converse effects.

In order to illustrate some characteristics of these trends, we present more detailed

Figure 4.2: Ratio of SO_x depositions to emissions for each country/area for the period 1997-2006. The ratios are on Y-axis and years on X-axis. Countries with similar trends are grouped together and those with negligible trend (i.e.,having deposition to emission trend close to zero) are not shown in the figure. The numbers under the country codes give the slopes of the curves.

data for a selection of countries/areas. Figures 4.5–4.7 show the five major contributors to the deposition of SO_x , OXN, and RDN into those countries/areas for the 10 years. The total contribution from the rest of the countries/areas together (represented as 'others') are also shown.

The slope of deposition to emission ratio of SO_x for most of the countries/areas are very weak (Figure 4.2), which means that the trends are more or less flat, but with some interannual variabilities. The weakness of the slopes is likely due to the meteorological variability since emissions are in general decreasing. Large negative slopes are seen for all seas considered. The reason for this is the large reduction in emission from the land sources, since those were the main contributors to deposition in the earlier years. Thus even though the emission from international ship traffic is increased over the years, it is not yet reflected in the deposition pattern. A steep increase in deposition to emission ratio is calculated for the countries Armenia (Figure 4.2f, AM), Belarus (Figure 4.2d, BY), Denmark (Figure 4.2d, DK), and Latvia (Figure 4.2h, LV). For all of these countries case (b) applies, the deposition remained more or less constant, while national emissions were decreasing. This implies that the transboundary contribution to deposition of SO_x to all these countries have not changed much over the years.

Figure 4.3: Ratio of OXN depositions to emissions for each country/area for the period 1997-2006. The ratios are on Y-axis and years on X-axis. Countries with similar trends are grouped together and those with negligible trend (i.e., having deposition to emission trend close to zero) are not shown in the figure. The numbers under the country codes give the slopes of the curves.

For example in case of Latvia, where the slope of emission/deposition for SO_x is the steepest positive (Figure 4.2h, LV), national emissions have been reduced by 92% in 2006 compared to 1997, but the deposition from the five major contributors remain approximately at the same level as in 1999 (Figure 4.5c).

As another example, the steepest negative slopes are seen for the Baltic Sea (Figure 4.2h, BAS) and the Black Sea (Figure 4.2i, BLS) (the same value for North Sea also). The main contributors to SO_x deposition over the Baltic Sea were Poland, Germany, the United Kingdom and Russia in the earlier years and these countries have reduced their emission considerably over time (Figure 4.5e). The deposition contribution from these countries have reduced over time due to emissions reduction, but deposition from ship traffic has increased. However the contribution to deposition from increased ship traffic is not larger than or equal to the land contribution of earlier years. Thus the total deposition to the Baltic Sea does not increase. Similarly for the Black Sea, where the largest contributors to SO_x deposition are always land emitters (Figure 4.5f). The five major contributors to deposition of SO_x over Black Sea are Ukraine, Turkey, Bulgaria, Romania and Russia. Thus, even though the increase in emission of SO_x from the Black Sea is 23% over the years, the absolute values are

Figure 4.4: Ratio of RDN depositions to emissions for each country for the period 1997-2006. The ratios are on Y-axis and years on X-axis. Countries with similar trends are grouped together and those with negligible trend (i.e., having deposition to emission trend close to zero), and seas (no emissions of NH_3) are not shown in the figure. The numbers under the country codes give the slopes of the curves.

negligible compared to the neighbouring land emitters or other seas and as a result the total deposition to the Black Sea remains almost unchanged.

For the largest emitters like Bulgaria, France, Germany, Italy, Poland, Russian Federation, Spain, Turkey, Ukraine and United Kingdom, the major contribution to deposition is from the country itself (e.g. Figure 4.5d for UK). The import into Great Britain remains almost on the same level throughout the simulated period and thus the ratio between indigenous to transboundary contribution gets larger for the latest years of simulation and this is reflected in the deposition to emission ratio of the country (see Figure 4.2d, GB). For smaller countries like Armenia and Georgia, more than 99% of the deposition is transboundary contribution (see e.g., Figure 4.5a for Georgia).

Figure 4.3 shows that the slopes of deposition to emission ratio of OXN are more or less flat but with some interannual variabilities similar to SO_x : i.e., the trends in deposition of OXN into most of the countries to a large extend follow the emission trends. Except for Portugal (Figure 4.3d, PT), Ireland (Figure 4.3d, IE), Iceland (Figure 4.3f, IS) and Austria (Figure 4.3h, AT), all other countries with negative slope values are Eastern European countries and the seas. Model results showed that for all these countries except for Russia, Turkey and Ukraine, more than 70% of the deposi-

Figure 4.5: Contribution of deposition of SO_x into the countries/areas Georgia, Iceland, Latvia, United Kingdom, Baltic Sea and the Black Sea. The five major contributors to deposition into each country plus the contribution from rest of the countries together (represented as 'others') for the period 1997-2006 are shown.

tion contribution is from transboundary fluxes.

For all sea-areas, the slopes of deposition to emission ratio of OXN are smaller compared to those of SO_x . This reflects smaller difference in reduction of NO_x emissions: the major contributors to total deposition over seas are land sources which have decreasing emissions, but these are balanced by increases in NO_x emissions from the ship traffic. Thus, there is no clear increase in the deposition to emission ratio of OXN.

The ammonia emissions can have a negative impact on the deposition of OXN. Ammonia and HNO_3 forms ammonium nitrate in an equilibrium reaction. HNO_3 dry deposits much faster than ammonium nitrate. Thus, an increase in ammonia emissions will give less national depositions of OXN but subsequently more long range transport. Similar to SO_x , the OXN deposited into all seas originates mostly from land sources and since these have been reduced considerably over the years, the increase in ship

Figure 4.6: Contribution of deposition of OXN into the countries/areas Georgia, Iceland, Latvia, United Kingdom, Baltic Sea and the Black Sea. The five major contributors to deposition into each country plus the contribution from rest of the countries together (represented as 'others') for the period 1997-2006 are shown.

emissions have not lead to an increase in deposition over sea areas.

Similar to SO_x , major part of OXN deposited into the largest emitters are from the country itself (see Figure 4.6d for GB), while smaller countries with lower emissions import a lot of OXN. For example, Georgia imports more than 99% of its OXN deposition and Russia is one of the largest contributors to OXN deposition in Georgia (Figure 4.6b). This shows the long range transport potential of OXN under favourable meteorological conditions. Similar to Georgia, Iceland is also receiving more than 99% of its OXN deposition via transboundary contributions (Figure 4.6b) while it has a major indigenous contribution of SO_x deposition (Figure 4.5b).

RDN depositions show a more or less flat trend in deposition to emission for almost all the countries (Figure 4.4). Much larger interannual variability in deposition is calculated for smaller countries with low emission compared to larger countries with

Figure 4.7: Contribution of deposition of RDN into the countries/areas Georgia, Iceland, Norway, United Kingdom, Baltic Sea and the Black Sea. The five major contributors to deposition into each country plus the contribution from rest of the countries together (represented as 'others') for the period 1997-2006 are shown.

comparatively higher emissions. The sea areas are 100% receptors for RDN and hence are not shown in the figure. Figure 4.4 shows that the trends are rather weak. An overall picture is that the long range transport potential of RDN is much smaller compared to that of OXN or SO_x and hence the indigenous contribution is considerably larger or even dominating over transboundary contributions even in the case of small or remote countries, like Armenia, Latvia, Georgia, Iceland, and the Scandinavian countries (Figure 4.7a, b and c for Georgia, Iceland and Norway). This is because RDN results from NH₃ emissions and NH₃ has a shorter life time compared to NO_x and SO_x , with rapid dry deposition close to sources.

4.3.1 Transboundary versus indigenous contributions

Figure 4.8 shows the transboundary contributions to all receptor areas for a number of pollutants expressed as percent of the total computed contributions (which we will denote FTB = fraction of trans-boundary). The countries are sorted in ascending order of FTB. Only yearly averages are considered here, but variations on shorter time scales (e.g. monthly) can of course be larger. There are large differences in the FTB for the different compounds. Compounds with long life time (e.g. particulates) have large transport potential and hence can have larger transboundary contributions than compounds with short life time. Precursors (e.g. NO_x) with low deposition velocities might in some circumstances have greater transboundary contributions than species (e.g. SO_2) with high deposition rates, although such tendencies depend heavily on the oxidation rates and fates of secondary compounds (e.g. on whether NO_x is transformed to fine particles or HNO_3).

As discussed in the beginning of this chapter, there is a general relationship between the size of the country and the size of the transboundary contributions. The location of the country and the source strength are the other factors that can influence the transboundary contributions. The latter is obvious: as an extreme case, if a country is not emitting at all, all pollution will be transboundary, regardless the size of this country. This is clearly visible in the case of Georgia (Figure 4.5a). A small country with comparatively low emissions (6 Gg SO_x in 1997- 14 Gg SO_x in 2006), more than 99% of the SO_x deposited into Georgia is from transboundary sources. The location of a country also plays role. A country that has no direct emitting neighbours will have a lower transboundary share than a country of the same size and with similar emission strengths that has direct emitting neighbours. Also the meteorological conditions influence the ratio between indigenous and transboundary contributions. For instance, on the Iberian peninsula, flow patterns often occur that cause the pollution to circulate in the area. This explains for example, why Spain has relatively low transboundary contributions.

In general the variability in transboundary fluxes for all countries is around 10-30% for the period 1997-2006. These values are larger than those found by van Loon et al. (2005). However, the interannual variability results from meteorological variability, emission changes and also chemical climate (e.g. life time of the pollutants). van Loon et al. (2005) considered constant emissions for the entire period of their simulations, so their calculated variability is smaller than in our study.

Different pollutants show different levels of variability in Fig. 4.8. Since all these pollutants are subject to the same meteorological conditions, other factors must control the difference between pollutants, namely the variability in their emissions and in their chemical properties and life time. The largest interannual variability is found for SO_x . The large reduction in SO_x emissions is the main reason for larger interannual variability in transboundary contribution of deposition of SO_x to each country. $PPM_{2.5}$ shows interannual variability as large as SO_x . But $PPM_{2.5}$ results have to be treated with caution, due to the adjustments made with emission data, however the longer life time

Figure 4.8: Transboundary contributions to deposition for SO_x , OXN, RDN, and $PPM_{2.5}$ to each country expressed as percent of the total calculated contributions. Data shown for the years 1997-2006.

of $PPM_{2.5}$ is a factor promoting larger variability. OXN shows the least interannual variability. This can be primarily due to much smaller emission reductions of NO_x and secondarily due to its chemical properties and life time. Once emitted, it takes time to transform into HNO_3 and within this period, in the absence of rain they can be transported to longer distances. HNO_3 dry deposits much faster and then precipitation does not have large role in deposition. Hence, in the case of OXN, the weaker emission reductions in NO_x could have been the main reason for smaller interannual variabilities. The reduced lifetime of RDN together with the weak emission reductions of NH_3 explains the reason for comparatively smaller interannual variabilities in transboundary contribution of depositions.

Generally larger countries or densely populated countries or countries with less emission regulations lies on the lower end of the transboundary contribution to deposition Figure 4.8, which means the indigenous contribution is dominating in case of these countries. Changes in emissions of individual countries are reflected in the indigenous contributions of these countries, but not in deposition totals to each country (Figures 4.5–4.7).

The main reason why no large interannual variations in the transboundary contributions are observed is that most countries have upwind neighbours in many wind directions, though with different emission densities. Interannual variations in flow patterns will therefore not lead to major changes in the transboundary contributions. The largest variability between the years was calculated for Cyprus, Ireland, Italy and Hungary in the case of SO_x deposition. This variability is likely a reflection of emission trends as similar variability is not seen for nitrogen compounds or PPMs where the emission reduction are not as strong as in the case of SO_x (Figure 4.9a and Figure 4.9b for Ireland and Italy). The Republic of Moldova has about 40% variability between the years 1997 and 2006 for the deposition of $PPM_{2.5}$ and it is seen that the year 2006 is contributing highly to this larger percentage in variability. Considering only the years 1997-2005, the variability in transboundary fluxes of $PPM_{2.5}$ deposition into Moldova is within the range of 20%. Generally the year 2006 shows an anomalous behaviour compared to other years in case of all components and this likely originates from the emission data (see the discrepancies in emission data for the year 2006 in section 4.2).

Figure 4.9: Emissions and Depositions of SO_x , oxidised and reduced nitrogen for Ireland and Italy for the period 1990-2006

4.4 SR results for the Appendix

SR matrices for the year 2007 is given in Appendix C. For each country, reductions in five different pollutants have been calculated separately with an emission reduction of 15% for SO_x , NO_x , NH_3 , and PPMs. These tables should be read as receptors in columns and emitters in the rows. A more detailed explanation of the these tables are given in the introduction of the Appendix C. Similar tables for all meteorological years of 1997-2006 is available on the web (www.emep.int).

The deposition tables in the appendix show the results of these (15% reduced emission) model runs after scaling with a factor 100/15, giving the equivalent of 100% emissions. Although introducing small errors due to non-linearity (Wind et al. 2004), this procedure allows an estimate of the complete deposition budget over each country. The deposition tables can thus be interpreted as the contributions from one country to another, at least within the limitations discussed in Wind et al. (2004).

4.5 Conclusions

This study focused on the trends in emission and deposition of pollutants over Europe for the period 1997-2006. From the results presented in this chapter, the following conclusions are drawn:

- In general, over the whole of Europe, the trends in total deposition of SO_x, OXN and RDN follow the emission trend. However, due to transboundary contributions and some non-linearities, this is less true for individual countries. The main contributors to deposition of SO_x for countries like Armenia, Belarus, Denmark and Latvia are transboundary fluxes. Even though these countries have reduced their emissions considerably over the years, the depositions resulting from the emissions of their largest contributors remain at an almost constant level, and thus the total deposition to these countries have not reduced much over the years. OXN deposition shows similar trends to those of SO_x, but with weaker signals (since the emission reductions for NO_x are relatively small compared to those of SO_x). The deposition trends of RDN follow the emission in most cases. This is due to the faster deposition rate of RDN, which causes larger indigenous contributions to deposition and thus the country's own emission trends are reflected.
- The deposition of pollutants into more than 50% of the countries follow the emission trends. Smaller countries with relatively lower emissions receive more than 99% of their deposition via transboundary contributions in the case of SO_x and OXN (e.g., Georgia, Armenia, Iceland etc.).
- The largest contributors to deposition of SO_x and OXN over sea areas are land sources, which have had decreasing emissions over the years. However, SO_x and NO_x emissions (and hence depositions) from ship traffic have increased over the

years. These two trend counterbalance each other to a large extent, and so the total deposition of SO_x and OXN to sea areas has remained almost constant over these ten years.

- For most countries, indigenous ('own') deposition, together with deposition from the five largest transboundary contributors, makes up 90% or more of the total contribution. This is true for all pollutants considered.
- The interannual variations in pollutant levels is about 10-30% and the variability in transboundary contributions are larger for smaller countries. This is slightly higher than what was found by van Loon et al. (2005) (10-20%). This difference originates from the use of yearly varying emission data used in this study, whereas van Loon et al. (2005) used constant emissions throughout their 4 years period. Larger interannual variability in transboundary contributions to depositions were found for SO_x compared to that of OXN or RDN. This is due to the larger emission reduction in case of SO_x (28%) than those of NO_x (7%) and NH₃ (8%) over the 10 years of this study).

References

- Amann, M., Cofala, J., Heyes, C., Klimont, Z., Schöpp, W., Jonson, J.-E., Simpson, D., and Tarrasón, L.: An initial outlook into the future development of fine particulate matter in Europe, in Transboundary Particulate Matter in Europe, EMEP Status report 4/2004, pp. 93–120, The Norwegian Institute for Air Research (NILU), Kjeller, Norway, 2004.
- Benedictow, A.: Documentation and verification of the 1999 PARLAM-PS meteorological fields used as input for Eulerian EMEP model, Tech. rep., The Norwegian Meteorological Institute, Oslo, Norway, research Note no. 111. (Reports also available for 1980,1985,1995,1999, 2000 and 2001, see www.emep.int), 2003.
- Cofala, J., Klimont, Z., Amann, M., Bertok, I., Heyes, C., Shöpp, W., and Wagner, F.: Draft input data for projections of air pollutant emissions and their sources in the non-EU countries up to 2020, Tech. Rep. EMEP/CIAM Report 1/2006, CIAM, 2006.
- Cofala, J., Amann, M., Heyes, C., Wagner, F., Klimont, Z., Posch, M., Shöpp, W., Tarrasón, L., Jonson, J., Whall, C., and Stavraki, A.: Analysis of Policy Measures to Reduce Ship Emissions in the Context of the Revision of the National Emissions Ceiling Directive, Final Report, Tech. Rep. IIASA Contract No 06-107, CIAM, 2007.

- Fagerli, H. and Aas, W.: Trends of nitrogen in air and precipitation: Model results and observations at EMEP sites in Europe, 1980-2003, Environ. Poll., 154, 448–461, 2008.
- Tarrasón, L., Benedictow, A., Aas, W., Klein, H., and Vestreng, V.: Transboundary pollution in 2005: an overview, in In Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe. EMEP Status Report 1/2007, pp. 13–32, The Norwegian Meteorological Institute, Oslo, Norway, 2007.
- Tarrasón, L., Nyíri, Á., Gauss, M., Jonson, J., Mareckova, K., and Wankmüller, R.: Transboundary pollution in 2006, in Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe in 2006. EMEP Status Report 1/2008, pp. 21– 36, The Norwegian Meteorological Institute, Oslo, Norway, 2008.
- van Loon, M., Wind, P., and Tarrason, L.: Meteorological variability in source allocation: Transboundary contributions across Europe, in In Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe. EMEP Status Report 1/2005, pp. 89–107, The Norwegian Meteorological Institute, Oslo, Norway, 2005.
- Wind, P., Simpson, D., and Tarrasón, L.: Source-receptor calculations, in Transboundary acidification, eutrophication and ground level ozone in Europe. EMEP Status Report 1/2004, pp. 49–75, The Norwegian Meteorological Institute, Oslo, Norway, 2004.

CHAPTER 5

Contributions from different emission sectors to depositions and air concentrations

Jan Eiof Jonson, Svetlana Tsyro, Hilde Fagerli and Alvaro Valdebenito

This chapter summarizes the analysis of the contributions from emissions in different sectors to the depositions and concentrations in countries within the (non extended) EMEP area for 2006. First, we present the contributions from the pan-European emissions in 10 anthropogenic SNAP sectors. Secondly, for a number of countries, we discuss the contributions from national emissions from defined sector groups.

All model calculations are carried out with the Unified EMEP model version rv3.1 in the official grid and using PARLAM-PS (Paralell version of HIRLAM) as the meteorological driver. It should be noted that the results below are based on 15% reductions in the emissions in the sectors. Because of non-linear effects in the chemistry larger (or smaller) perturbations in the emissions could, for some pollutants, result in different source-receptor relationships, potentially affecting the conclusions.

5.1 Contributions from different sectors on European scale

The contributions from emissions in different sectors to deposition or concentration in a country depend both on the distribution of emissions between different sectors within the country itself and its neighbouring countries. In a country where most of the deposition originates from sources inside the country, the contribution will resemble the distribution of emissions between sectors, whilst countries where transboundary air pollution dominates will be more affected by the sector distribution in the contributing countries. Furthermore, emissions in different sectors have somewhat different potentials to be transported over longer distances (see next section). Sector-specific calculations have been presented previously with the EMEP model (Simpson et al. 1999), including a rather detailed study of different road-traffic contributions (Reis et al. 2000), but here we focus on the transboundary contributions.

The contributions from each sector have been estimated by reducing 15% of the emissions in sector by sector for all countries at the same time (see Table 5.1 for an overview of the different sectors). Below we present the contributions from each emission sector relative to the total contribution from anthropogenic emissions.

Emissions from sectors 1, 2 and 3 are related to combustion processes and constitute the major contribution to SO_x deposition for all countries. However, in the sea areas and countries with a coastline, SO_x emissions in sector 8 contribute substantially (Figure 5.1 a), mainly because of ship traffic emissions. For instance, the contribution from sector 8 to deposition of SO_x in Denmark is around 40% of the total contributions from anthropogenic emissions.

For oxidized nitrogen deposition, road traffic emissions (sector 7) play an important role. For most countries, emissions in sector 7 are the largest contributor to oxidized nitrogen deposition (Figure 5.1 b) with contributions ranging from 20% to 50%. However, in the sea areas and for many countries with coastlines (e.g. Denmark, Norway, Portugal and Iceland) sector 8 is as important as sector 7, mainly because of ship traffic emissions. Emissions from stationary combustion sources contribute around 20-40% of the total deposition of oxidized nitrogen from anthropogenic sources.

Agricultural emissions (NH_3 , sector 10) give a slightly negative contribution to oxidized nitrogen deposition for some countries, and positive for others. Ammonia reacts with nitric acid to form aerosol ammonium nitrate which has a less efficient dry deposition and therefore a longer lifetime than nitric acid. Consequently, a decrease of ammonia in the country leads to less transport of oxidized nitrogen (as ammonium nitrate) out of the country and more deposition of oxidized nitrogen (as nitric acid) inside the country. Thus, the reduction of ammonia emissions leads to an increase of oxidized nitrogen deposition in the country-emitter. On the other hand, oxidized nitrogen deposition increases in the country affected by the transboundary pollution by ammonium nitrate.

Agricultural activities (sector 10, ammonia) are the most important source of reduced nitrogen deposition (Figure 5.1 c). Small negative contributions from other sectors (mainly related to NO_x emissions) can be seen in countries were the indigenous contribution is important, whilst for countries where long range transport is more important (e.g. Norway, Sweden, Iceland and the sea areas), the contributions from other sectors are positive. The NO_x emissions in the other sectors contribute to ammonium nitrate aerosol formation, and thus result in less deposition of reduced nitrogen in the countries where they are formed, but more in the areas to which they are transported.

Both combustion sources (for SO_x and NO_x), traffic emissions (road, off road and shipping; mainly NO_x and to some extent SO_x) and agriculture (NH_3) contribute to

Table 5.1: Overview of the different emission sectors (SNAP) used in modelling.

No.	Sources
1	Combustion in energy and transformation industries
2	Non-industrial combustion plants
3	Combustion in manufacturing industry
4	Production processes
5	Extraction and distribution of fossil fuels and geothermal energy
6	Solvents and other product use
7	Road transport
8	Other mobile sources and machinery (including ship traffic emissions)
9	Waste treatment and disposal
10	Agriculture

secondary inorganic aerosol (SIA) formation (Figure 5.2 a). Overall, sector 1 is the most important, but in many countries the contributions from traffic emissions and/or emissions from agriculture are comparable. SIA constitute a large part of $PM_{2.5}$ (30% to 55% in most of Europe, EMEP CCC & MSC-W (2009)). Here, only dry $PM_{2.5}$ (excluding secondary organic aerosols) from antropohenic sources is considered (e.g. dust and sea salt is not included). In that case, modelled SIA constitute around 60% to 90% of $PM_{2.5}$. Therefore, contributions from different sectors to $PM_{2.5}$ are similar to SIA. However, sectors 2 and 4 are relatively more important, as a large part of primary PM emissions are emitted from those sectors, whilst agricultural sources are less important.

5.2 National sector contributions to concentrations and depositions

In this section, we look at the importance of different emission sectors focusing mainly on their national contributions to pollutant depositions and concentrations. In general, the national contributions to pollution levels are determined by factors such as: 1. The amount of emissions in the national sectors of interest; 2. the size of the country (i.e. for larger countries the pollutants in general have to be advected further to get outside the national borders, and subsequently they are expected to play a larger role in domestic pollution); 3. the location of the emission sources within the country; 4. emission height (e.g. emissions from high stacks will be advected further than if emitted at the surface; 5. sources in neighbouring countries that will affect the chemical regime; and 6. non-linearities in the chemistry.

Thunis et al. (2008) sought to assess differences in the effects when emission changes were applied to single sectors compared to equal emission changes for all sec-

(c) Reduced nitrogen deposition

Figure 5.1: Contributions [%] from different emission sectors (relative to contributions from all anthropogenic emissions) to deposition of oxidized sulphur, oxidized nitrogen and reduced nitrogen in 2006 (sorted by S1, S7 and S10, respectively).

Figure 5.2: Contributions [%] from different emission sectors (relative to the contribution from all anthropogenic emissions) to secondary inorganic aerosols (SIA), $PPM_{2.5}$ and $PM_{2.5}$ in 2006 (sorted by S1).

tors. In general, they found that abating emissions which are released at low heights was more efficient in reducing the surface aerosol concentrations than abating emissions injected from high stacks. This finding has important implications for deciding on the measures in order to reduce the population exposure, as low height emissions (e.g. traffic, residential combustion) are often correlated with high population density.

In order to study the effect of national emissions from different source types on pollutant depositions and concentrations, a set of source-receptor runs for three subsets of sectors have been made for a number of countries. The three selected sub-sets are:

- S_{123} Sectors 1, 2 and 3 (see Table 5.1). These sectors are the main sources of SO_x , they also emit significant portions of NO_x and $PPM_{2.5}$. Emissions from these sources are predominantly released from high stacks.
- S_{78} Sectors 7 and 8 (see Table 5.1). These sectors are the major sources of NO_x and $PM_{2.5}$. Emissions from these sources are released at or near the surface.
- S_{10} Sector 10, agriculture. The dominant pollutant is ammonia, which is emitted at the surface.

Below we discuss the calculations where the domestic contributions from the individual countries have been grouped as described above.

We will only briefly discuss the effects on reduced nitrogen from emissions of ammonia, as virtually all emissions are from S_{10} , and of sulphur, where virtually all emissions are from S_{123} . In such cases, when almost all emissions are in the same set of sectors, the sector calculations will not differ substantially from the regular source-receptor calculations. Such calculations are described in Chapter 4. Here we will focus on NO_x , where emissions are relatively evenly distributed between the aggregated sets of S_{123} and S_{78} . Along with VOC (Volatile Organic Compounds) and CO, NO_x is also important for controlling boundary layer ozone. We will also discuss the contribution of the sector aggregated national emissions to $PM_{2.5}$ and SIA (secondary inorganic aerosols) concentrations in the countries. The gaseous precursors of SIA, namely SO_x , NO_x and NH_3 , are emitted from all three sector-groups. In addition, primary $PM_{2.5}$ is emitted from S_{123} and somewhat less from S_{78} .

5.2.1 Sector contributions to depositions of oxidised nitrogen

Figure 5.3(a) shows the contributions from national sources to the depositions from national sources of oxidised nitrogen. Figure 5.3(b) highlights the national contributions to the depositions of oxidised nitrogen from the three aggregated sectors relative to the total deposition in the same country. The countries are ranked from left to right according to the national contributions from sectors S_{123} . Notice that the ranking differs between Figure 5.3(a) and (b). As also discussed in section 5.1 the largest portion

of the depositions in most of the countries is attributed to emissions in S_{78} and partially in S_{123} .

The ranking of the domestic contribution to the countries in Figure 5.3 to a large extent reflects the geographical size and location of the country. For large countries as Russia, Spain and Poland, a greater portion of the emitted nitrogen will be deposited before crossing the national borders. Furthermore, countries facing the Atlantic, with prevailing winds from the west, such as Portugal, Great Britain and Ireland, will in general be less affected by transboundary pollution from other countries (even though there are large contributions from shipping for these countries as shown in section 5.1).

From sector 10 (ammonia emissions) there is a negative contribution to deposition of oxidised nitrogen. Ammonia and HNO_3 form ammonium nitrate in an equilibrium reaction. The dry deposition is faster for HNO_3 than for ammonium nitrate. Thus, higher ammonia emissions will give less national depositions of oxidised nitrogen but subsequently more long range (transboundary) advection. This effect is in particular seen in several small countries with high ammonia emissions such as Denmark and Latvia. For larger countries, such as Poland and Spain the effect is apparently smaller as a larger portion of the oxidised nitrogen will be deposited domestically anyway. There are only small contributions from other sectors.

A complementary analysis (figures are not shown here) reveals that the relative contribution from S_{78} increases compared to S_{123} when indigenous depositions are normalized by the emissions. As a result of being injected directly at a higher level, emissions from S_{123} are advected further and are thus more likely to be deposited outside the national borders.

5.2.2 Sector contributions to depositions of sulphur

As also shown in section 5.1 the dominant sources of sulphur are in S_{123} (See Figure 5.4(a) and (b)). However, as seen in Figure 5.4(a), for a number of countries a relatively large fraction of the total SO_x deposition is from other sectors (sectors 4, 5, 6 and 9). As Figure 5.4(b) shows, in most of these countries the depositions due to national sources are relatively low compared to the depositions of transboundary origin. The contributions from S_{78} are mainly an indirect effect caused by chemistry. The OH radical is needed in the oxidation of both NO₂ and SO₂. As NO₂ levels increase, less OH is available converting SO₂ to sulphate. As SO₂ is dry deposited faster than sulphate, more sulphur is deposited near its sources. This mechanism is in particular visible for Luxembourg.

5.2.3 Sector contributions to depositions of reduced nitrogen

As also shown in section 5.1, the dominant source of reduced nitrogen is S_{10} (agriculture) in all countries. There are only small contributions from other sectors. Overall, reduced nitrogen species are deposited more efficiently than oxidised nitrogen and

Figure 5.3: National sector contribution [%] to the (a) indigenous and (b) total deposition of oxidised nitrogen. Red: S₁₂₃, blue: S₇₈, yellow: S₁₀ and green: other sectors.

sulphur species, and thus transported over shorter distances. Hence, the national contributions to depositions of reduced nitrogen are larger compared to oxidised nitrogen and sulphur as shown in Figure 5.5 compared to Figures 5.3 and 5.4.

5.2.4 Sector contributions to ozone expressed as SOMO35

Figure 5.6 shows the national contributions to SOMO35 relative to the country specific averaged SOMO35 from the three aggregated sectors. Again the countries are ranked according to the national contributions from sectors S_{123} . The ranking is only marginally determined by the geographical size of the countries but is strongly linked

Figure 5.4: National sector contribution [%] to the (a) indigenous and (b) total deposition of oxidised sulphur. Red: S_{123} , blue: S_{78} , yellow: S_{10} and green: other sectors.

to non-linearities in the ozone chemistry. Ozone production requires ample sunlight and a favourable mix of NO_x and VOC. High NO_x emissions (or rather a high NO_x to VOC ratio) will lead to ozone titration. For most countries, the contributions to SOMO35 from NO_x emissions are a result of both positive and negative terms partially cancelling out. The net ozone production is typically most frequent in areas/seasons with intense sunlight, while ozone titration occurs in countries/regions with high NO_x levels and less sunlight. In southern European countries as Spain, Portugal and Italy, and also in Russia, reduction of national emissions from S_{123} and S_{78} results in decreases in SOMO35. In northern parts of central Europe, as in Great Britain, the Netherlands and Belgium, there is less sunlight and NO_x emissions are very high.

Figure 5.5: National sector contribution [%] to the total deposition of reduced nitrogen. Red: S_{123} , blue: S_{78} , yellow: S_{10} and green: other sectors.

Figure 5.6: National sector contribution [%] to the total SOMO35. Red: S_{123} , blue: S_{78} , yellow: S_{10} and green: other sectors.

Here, national emissions from S_{123} and S_{78} have effects opposite to those in southern Europe as a result of ozone titration. Emissions from other sectors than S_{123} and S_{78} have a much higher VOC to NO_x ratio, and reduction of emissions from these other sectors results in a decrease in SOMO35. Similar results were also obtained when reducing all emissions in each sector separately (Simpson et al. 1999). In their work, the largest overall effects of emission reductions on AOT40 were calculated for sectors 6 and 7. Similarly to our study, contributions from sector 7 (and 8) were the net result of both negative and positive contributions.

5.2.5 Sector contributions to concentrations of SIA and PM_{2.5}

Figure 5.7 shows the national contributions from the three aggregated sector groups to the annual mean indigenous (i.e. from national emissions only) concentrations of SIA (Figure 5.7(a)) and to the total SIA concentrations (Figure 5.7(b)) in the considered countries. Figure 5.8 is analogical, but for $PM_{2.5}$. Note that only anthropogenic $PM_{2.5}$ is considered in this analysis (i.e. $PM_{2.5}$ does not include sea salt and natural dust), besides it does not include secondary organic aerosols.

Among SIA precursors, SO_x is emitted mostly from S_{123} , NO_x is predominantly emitted from S_{78} , followed by S_{123} , while NH_3 originates almost entirely from S_{10} . The presence of NH_3 in the air is essential for formation of ammonium sulphate and ammonium nitrate aerosols from SO_x and NO_x emissions. Primary $PM_{2.5}$ is emitted from S_{123} and somewhat less from S_{78} .

In Figures 5.7 and 5.8, the countries are ranked from left to right according to decreasing national contributions from S_{123} . Note that the countries' order in the upper and lower graphs differs, indicating a different importance of national S_{123} emissions in the indigenous and in the total pollution by SIA and $PM_{2.5}$ in these countries. The role of the domestic emissions from different sectors is affected by the factors outlined in the beginning of the chapter.

Regarding the domestic SIA pollution from the different sector groups (Figure 5.7), the model calculations show considerable contributions from agriculture (S_{10}) and stationary combustion sources S_{123} , whilst the contribution from mobile sources S_{78} is generally smaller, with some exceptions (e.g. Italy, France and Norway). In several countries, such as Denmark, Latvia, the Netherlands, Luxembourg, Ireland, Sweden and Lithuania, ammonia emissions from S_{10} are the source of more than 50% of the domestic SIA concentrations. This is different to what is found when reducing the pan-European emissions sector by sector, where mobile sources accounted for an equal or larger part of SIA concentrations as agriculture. However, because NO_x (and SO_x) in general are more transboundary than NH_3 , S_{10} is relatively more important for domestic contributions.

On the other hand, for many countries (e.g. Spain, Poland and Portugal) emissions from S_{123} are responsible for more than 50% of domestic SIA because of the high emissions in these sectors.

When looking at the national sector contributions (Figure 5.7(b)) to the total SIA concentrations, two major groups of countries can be identified. The first group (on the left side of the graph) is the countries with significant contribution from national S_{123} to the total SIA (e.g. Spain, Russia, Poland, the UK, Italy and Germany). A common feature for these countries is that they are large countries with relatively large national contributions to their SIA concentrations. The second group consists of countries where S_{10} is the major source of total SIA among the national sector emissions (on the left side of the graph). These are the countries which are typically small and in which SIA concentrations are predominantly due to the transboundary transport. The emissions from S_{123} released from tall stacks are more likely to be transported beyond

Figure 5.7: National sector contribution [%] to the (a) indigenous and (b) total SIA concentrations. Red: S_{123} , blue: S_{78} , yellow: S_{10} and green: other sectors.

the country's borders and to participate in the transboundary pollution compared to the surface emissions. Thus, the national emissions from S_{10} , which are released at surface, play a more important role in SIA concentrations in these countries.

The main findings regarding the sector contributions to SIA concentrations also apply to $PM_{2.5}$ (here $PM_{2.5} = PPM_{2.5} + SIA$) (Figure 5.8). However, there are some differences as summarised below. In general, the contributions to national $PM_{2.5}$ concentrations from S_{123} (and to some extent from S_{78}) are larger, while the contributions from S_{10} are smaller compared to SIA. Furthermore compared to SIA, the emissions from S_{123} are responsible for a larger portion of $PM_{2.5}$ than S_{78} emissions. There is a larger contribution to $PM_{2.5}$ than to SIA concentrations from other domestic sectors

Figure 5.8: National sector contribution [%] to the (a) indigenous and (b) total $PM_{2.5}$. Red: S_{123} , blue: S_{78} , yellow: S_{10} and green: other sectors.

(mostly from sector 4, production processes) in most of the countries studied. Overall, the role of domestic sources is somewhat larger in $PM_{2.5}$ concentrations than in SIA concentrations in the countries. This is because the primary fraction within $PM_{2.5}$, i.e. primary $PM_{2.5}$, is characterized by somewhat shorter transport distances from the sources compared to secondary aerosols. Therefore $PPM_{2.5}$ and also $PM_{2.5}$ typically contribute less to the transboundary pollution and more to the domestic pollution compared to SIA.

5.3 Concluding remarks

Traditionally the source-receptor relationships are calculated applying the same percentage reductions for all sectors in a given country. This type of calculations is also included in this year's report (see Chapter 4). Here, we presented the results from two different setups of source-receptor model calculations: in the first one, the pan-European emissions were reduced from one sector at a time, while in the second one, the reductions were applied to national emissions from several sector groups (namely, combustion from stationary sources, mobile sources and agriculture). The results from such calculations give indications on what type of emissions are the most important in terms of air pollutants and depositions from pan-European sources, as well as from national emission sources.

Stationary combustion sources were shown to be the dominant source of oxidised sulphur deposition, both indigenous and transboundary. They also contribute significantly to the deposition of oxidised nitrogen in a number of countries and to the concentrations of SIA and $PM_{2.5}$. Emissions from tall pipes in these sectors (S₁₂₃) are advected over larger distances and thus have a larger transboundary effect.

Emissions from road traffic and other mobile sources (including shipping) make the largest contribution to the deposition of oxidised nitrogen and have the largest effect on ozone formation. They also make a significant (though not the major) contribution to SIA and $PM_{2.5}$ concentrations. Emissions from S_{78} are emitted at or near the surface and they therefore in general have a larger effect on the indigenous pollution than emissions from S_{123} . However, precursors (e.g. NO_x) with low deposition velocities might in some circumstances have greater transboundary contributions than species (e.g. SO_2) with high deposition rates. Therefore, this generalisation apply to each precursor separately. The traffic sources are likely to be well correlated with population density (Thunis et al. 2008) thus affecting people exposure to air pollution.

Ammonia emissions from agriculture are a prerequisite for the formation of ammonium nitrate. They are the major source of reduced nitrogen depositions and an important source of SIA in many countries. In general, the contributions from agriculture to SIA concentrations is larger when considering only the sources from the country itself because of the larger long range transport potential of NO_x and SO_x . It is shown that agricultural ammonia emissions can make both negative and positive contributions to oxidised nitrogen in different countries, and on the domestic versus transboundary depositions of oxidised nitrogen.

Emissions from non-industrial (residential) combustion and production processes are shown to be the most important sources of primary PM.

It should be noted that these are generic findings and a number of country specific diversions in the effects of sector emissions on air concentration and depositions, indigenous as well as transboundary, exist.

References

- EMEP CCC & MSC-W: Transboundary Particulate Matter in Europe, Status report 4/2009, EMEP Report 4/2009, The Norwegian Institute for Air Research (NILU), Kjeller, Norway, 2009.
- Reis, S., Simpson, D., Friedrich, R., Jonson, J., Unger, S., and Obermeier, A.: Road traffic emissions - predictions of future contributions to regional ozone levels in Europe, Atmos. Environ., 34, 4701–4710, 2000.
- Simpson, D., Reis, S., and Jonson, J.: Effects of emissions control sector specific calculations, in EMEP Summary Report 2/99, Transboundary photooxidants in Europe, pp. 19–28, The Norwegian Meteorological Institute, Oslo, Norway, 1999.
- Thunis, P., Cuvellier, C., Roberts, P., White, L., Post, L., Tarrasón, L., Tsyro, S., Stern, R., Kerschbaumer, A., Rouil, L., Bessagnet, B., Bergström, R., Schaap, M., Boersen, G., and Builtjes, P.: EURODELTA - II: Evaluation of a sectoral approach to integrated assessment modelling including the Mediterranean sea, http://aqm.jrc.ec.europa.eu/eurodelta/publications.html, 2008.

CHAPTER 6

The importance of the meteorological driver for Source-Receptor Calculations

Michael Gauss

Transboundary transport of air pollution strongly depends on meteorological conditions and processes occurring on different scales. The general circulation of the atmosphere determines the time required for long-range transport of pollutants. On smaller scales, enhanced precipitation will increase wet deposition and thus limit the export of pollutants out of a given region. Dry deposition depends on surface properties such as humidity, temperature and snow cover. Air temperature, cloudiness, and humidity strongly affect chemical and physical processes and thus the atmospheric lifetime of pollutants, which in turn limits their ability to travel over long distances. Small-scale processes such as convective activity, boundary layer height and ventilation influence the vertical transport of surface pollutants up to the free troposphere where they can undergo regional to intercontinental transport. Changes in meteorology on different scales thus have a rather large effect on long-range transport and sourcereceptor (SR) analyses. A large part of interannual variability found in the 'blame matrices' provided each year by MSC-W can be attributed to variability in meteorology. A study looking specifically at the effects of interannual meteorological variability on pollutant source allocation was described in detail by van Loon et al. (2005). For that study, the Unified EMEP model was run for five consecutive years with input from one meteorological model (PARLAM-PS) and with constant emissions Changes in source-receptor relationships from year to year were analysed. This section, by contrast, focuses on one single year (2006) and discusses differences in transboundary transport that arise solely from using different meteorological drivers.

The Unified EMEP model can be run with meteorological input from different Numerical Weather Prediction models (NWPs), e.g. WRF, HIRLAM, and the ECMWF-IFS model system.

Tarrasón et al. (2008) presented source-receptor calculations, which were conducted with two different sets of meteorological data for the year 2006, generated by the PARLAM-PS and ECMWF-IFS models, respectively. For this year's report we have performed a selection of additional source-receptor calculations for the same year, but driven by meteorological output from the HIRLAM model, as used this year in the operational runs.

In order to compare the uncertainties due to the use of different meteorological drivers with those changes that are due to interannual variability, some figures in this section will include results from the source-receptor calculations presented in the appendix of this status report, i.e. for the year 2007. These calculations are based on HIRLAM meteorology and can thus be compared to the HIRLAM calculations for 2006, keeping in mind that also the emissions changed from 2006 and 2007.

In the remainder of this section the following definitions will be used:

- PS-2006 SR calculations with data from the PARLAM-PS model, a dedicated version of the HIRLAM model using the same grid as the Unified EMEP model (i.e. polar-stereographic, 50x50 km²).
- **EC-2006** SR calculations with data from the IFS model system of ECMWF, run on T319 spectral resolution (corresponding to about $0.5^{\circ} \times 0.5^{\circ}$ lat/lon), interpolated to the polar-stereographic 50x50 km² grid of EMEP.
- **H50-2006** SR calculations with data from the HIRLAM model run on $0.2^{\circ} \times 0.2^{\circ}$ resolution, interpolated to the polar-stereographic 50x50 km² grid of EMEP.
- H50-2007 same as H50-2006, but run for the year 2007.

The resolution of the Unified EMEP model is identical in all four sets of calculations. The three first sets use emissions for 2006, while H50-2007 uses emissions for 2007.

In addition we define the 'NWP effect' here as a measure of how different the results from SR calculations can be when different meteorological drivers are used. This measure is, in the present study, estimated from the range of results obtained when using different NWPs. It is not only related to differences in the NWP output itself but also to the different degrees of interpolation from the NWP grid to the EMEP grid.

The meteorological year in the first three analyses is the same (2006) so that variability in the results is solely due to the NWP effect, while differences between H50-2006 and H50-2007 can be caused by changes in emissions and meteorological conditions from 2006 and 2007, which are described elsewhere in this report.

CHAPTER 6. METEOROLOGICAL DRIVERS

A large number of factors influence the relative uncertainty in the calculation of transport from one area A to another area B (the term 'area' referring here to one country or a group of countries). The most relevant include:

- meteorological conditions in and between areas A and B (e.g. the prevailing wind velocity and direction, precipitation, etc.)
- the atmospheric lifetime of the pollutant in question, with respect to both chemical and physical loss mechanisms
- the distance between areas A and B
- the size of area B
- the time period over which the SR calculation is averaged

In the following subsections examples will be shown focusing on pollution export and import, and pollution due to indigenous emission sources.

6.1 **Pollution export**

As an example of pollution export Figure 6.1 shows the amounts of oxidized sulphur exported from the United Kingdom and Poland to other countries, based on the three calculations made for 2006 and the one made for 2007.

The blue, red and green bars are for 2006 and are based on the same emission data, i.e. the range of results reflects the NWP effect. Relative differences can be large when considering individual countries, but tend to affect only those areas receiving small shares of the total export. The export to large areas, such as the entire European Union, are rather robust. There is a tendency that transport to or across sea areas is more sensitive, notably the export from UK to Sweden and Norway, or to the North Sea areas. A comparison between PARLAM-PS and EC meteorology presented in Tarrasón et al. (2008) revealed that the former data set predicts much less precipitation over sea areas in 2006, thus allowing more oxidised sulphur to be transported from UK to Scandinavia. Apart from these exceptions the differences are relatively small, below 10 percent in most cases.

The purple bars depict pollution export in 2007 and have been included to enable a judgement on how important the NWP effect is compared to interannual variability in meteorology and emissions. In most cases the export from the UK to other countries decreased from 2006 to 2007, connected with a significant reduction in sulphur emissions. But also in the case of Poland, where emission reductions were less significant, the export decreased in many cases. In most cases the interannual variability is more pronounced than the NWP effect.

Figure 6.1: Export of oxidised sulphur from the United Kingdom (upper panels) and Poland (lower panels) to other areas, based on four different source receptor calculations. The six larges receptors are shown separately to the right (note the different vertical scales). Unit: 100 Mg(S)/year.

6.2 **Pollution import**

Focusing on the import of pollutants instead, an obvious finding is that the distance from source to sink is a major factor of uncertainty.

Figure 6.2 shows imports to Norway and Germany from other countries and areas. Norway is chosen because it is a country that is relatively far away from major emitters, with few neighbouring emission sources, and yet heavily influenced by import of pollutants. Germany is chosen as a relatively large country with significant indigenous pollution, but at the same time subject to large import of pollution due to its central geographic location.

Both the NWP effect and the interannual variability seem to be much larger for Norway than for Germany. The difference between 2006 and 2007 is much larger than the change in emission would suggest, so most of the change is due to meteorology.

It is not evident if ozone or particulate matter is the most sensitive component. SOMO35 changes due to transboundary transport of NOx emissions turn out to be rather sensitive to the NWP effect but also to real interannual variability in meteorology. As an example for a relatively large country with a central location, the impact on

Figure 6.2: Change in wet deposition of oxidised sulphur (top, 100 Mg(S)/yr) and change in concentrations of $PPM_{2.5}$ (bottom, $\mu g m^{-3}$) due to imported pollutants from selected areas. Left panels are for Norway, right panels for Germany. The results are normalised to H50-2006 results, i.e. H50-2006=1.

Figure 6.3: Change in SOMO35 (ppb days) in Germany due to imported NOx (left) and imported VOCs (right). The results are normalised to H50-2006 results, i.e. H50-2006=1 for positive contributions, H50-2006=-1 for negative contributions.

SOMO35 is shown for Germany in Figure 6.3. The figure includes changes both due to NOx emissions and VOC emissions from major contributors. The NWP effect is not significantly larger than for $PPM_{2.5}$ shown in Figure 6.2. However, also for SOMO35 the uncertainties tend to be larger for countries that are either farther away from major emission sources or are smaller in size. Still, in most cases the uncertainties do not affect the very largest contributors as these usually include neighbouring countries.

Figure 6.4: Left: Contribution of indigenous pollution to total wet deposition of oxidised sulphur in different countries (unit: percent). Right: Same data, but normalized to EC-2006 results, i.e. EC-2006=1. H50-2006 can not be shown here because only selected emitters could be re-calculated with HIRLAM data for 2006.

6.3 Indigenous pollution

Figure 6.4 shows the importance of indigenous pollution as compared to total pollution regarding oxidised sulphur in six selected countries of different size. The left panel shows the contribution of indigenous pollution sources to total wet deposition of oxidised sulphur. For large countries this share is about half of the total, while for smaller countries it is much smaller. To visualize the NWP effect more clearly the right panel shows these shares normalized to EC-2006. For countries with a relatively small area the NWP effect, as represented by the differences between the red and the blue bars, tends to be larger than for larger countries, where errors in meteorological parameters tend to average out, at least on longer time periods. Both the NWP effect and the interannual variability are larger for the relatively small countries that are strongly impacted by imported pollution.

6.4 Conclusions

The main findings can be summarized as follows:

- For large countries the uncertainty connected to the meteorological driver is smaller than for small countries.
- The relative uncertainty is larger for the small contributions, while the results for the large contributions, both in terms of export and import of pollutants, are rather robust.
- The change in SOMO35 due to imported NOx is rather sensitive to uncertainties in the meteorological driver.

- In general, the uncertainty due to the meteorological driver is smaller than or comparable in magnitude to the changes related to interannual variability.

However, the remarks made in this chapter have to be considered as being rather general. Although the examples shown have been chosen to reflect the main features seen in the data, other countries or emitter-receptor pairs can be found where the differences contrast the overall tendencies to varying degrees. Transboundary transport of air pollution is influenced by a complex interplay of precipitation, wind direction and other parameters, as well as correlations in between them. In some cases differences connected to the NWP model may largely cancel out on the way between the emitter and receptor areas and thus suggest a better agreement than is actually present.

Also, the averaging time used in the SR calculations (one year) is long compared to the timescales of regional transport in the troposphere. On shorter timescales, say a month or less, the error due to the NWP input would obviously be larger. However, when looking at total annual transport, the results seem to be rather robust at least for larger areas and the most important contributors.

In most cases the differences between H50-2006 and EC-2006 are smaller than the differences due to interannual variability. In many cases the difference between PS-2006 and H50-2006 is comparable in magnitude to the interannual variability. This is one of the reasons why we refrain from reporting year-to-year trends based on SR calculations that are performed with different NWPs.

The question about which meteorological variables contribute most to the differences can not be easily answered based on the available set of data. Cloudiness and precipitation are usually difficult to predict in NWPs. Earlier studies have shown that precipitation frequency is more important than precipitation amount in the case of highly soluble species. There is also less observational data over sea areas so that NWPs tend to be less certain there. This will affect source-receptor relations where a larger part of the travelled distance goes through marine areas or areas characterized by a complex interplay between precipitation events and dry periods.

References

- Tarrasón, L., Nyíri, Á., Gauss, M., Jonson, J., Mareckova, K., and Wankmüller, R.: Transboundary pollution in 2006, in Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe in 2006. EMEP Status Report 1/2008, pp. 21– 36, The Norwegian Meteorological Institute, Oslo, Norway, 2008.
- van Loon, M., Wind, P., and Tarrason, L.: Meteorological variability in source allocation: Transboundary contributions across Europe, in In Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe. EMEP Status Report 1/2005, pp. 89–107, The Norwegian Meteorological Institute, Oslo, Norway, 2005.

Part III Ongoing work

CHAPTER 7

Improved resolution in the EMEP model

Hilde Fagerli, Peter Wind, Michael Gauss, Ágnes Nyíri, David Simpson and Svetlana Tsyro

Last year we presented for the first time EMEP model calculations for Europe (for 2006) with grid resolutions of 50 km, 25 km and 10 km, respectively. This year we have performed 50 and 25 km model runs for 2007. Furthermore, we have for the first time run the EMEP model for Europe in rotated spherical coordinates (in the real projection of the meteorology) at a resolution of $0.2^{\circ} \times 0.2^{\circ}$. The same model version (rv3.1) have been used for all the runs.

For 2007 we have performed a preliminary analysis of the effect of resolution on source-receptor calculations. Only the 3 'simplest' components are considered in this first exercise; SO_x , fine primary particulate matter ($PPM_{2.5}$) and coarse primary particulate matter (PPM_{co}). Unfortunately, appropriate landuse data (and thus implicitly BVOC) on high resolution have not yet become available. An analysis for e.g. photochemical compounds will be pursued once these data sets are available.

7.1 Meteorological Fields

The different meteorological data set for the EMEP model runs were provided by the HIRLAM model run in $0.1^{\circ} \times 0.1^{\circ}$ (2006) and $0.2^{\circ} \times 0.2^{\circ}$ (2006 and 2007) resolution. HIRLAM-20 (with $0.2^{\circ} \times 0.2^{\circ}$ resolution) was run for an extended area comprising both Europe and large parts of Central Asia (shown in green), while HIRLAM-10 ($0.1^{\circ} \times 0.1^{\circ}$ resolution) was run for an European window only (yellow), which is due to numerical problems with HIRLAM-10 in high elevation areas of Central Asia. The

Figure 7.1: The different domains of meteorological input data. Black: EMEP official (132×111 boxes / 50×50 km²), red: EMEP_{ext} (132×159 boxes / 50×50 km² or 264×318 boxes / 25×25 km²), blue: EMEP_{red} (560×480 boxes / 10×10 km²), green: HIRLAM-20 NWP (370×380 boxes / $0.2^{\circ} \times 0.2^{\circ}$), yellow: HIRLAM-10 NWP (500×500 boxes / $0.1^{\circ} \times 0.1^{\circ}$)

different domains are shown in Figure 7.1.

Based on the HIRLAM-20 output, two data sets were generated for the area depicted by the red rectangle: one on 25×25 km² resolution and one on 50×50 km² resolution. In addition, the HIRLAM-20 meteorological fields were used directly as input for the EMEP model. HIRLAM-10 output was interpolated into 10×10 km² resolution for the area marked in blue. A summary of the different meteorological input used for the model calculations is shown in Table 7.1.

The HIRLAM runs were started every 6 hours, and the meteorological fields for 9 and 12 hours prognoses are used by the EMEP model. The meteorological fields from HIRLAM-20 are defined in a rotated spherical projection and converted into a polar stereographic grid for use by the EMEP model, or used directly. Vertically the 40 eta levels from the meteorological model are interpolated into the 20 EMEP sigma levels. The interpolation process introduces some inconsistencies in the wind fields. In order to reduce the mass balance error, a filtering is applied to the wind fields. The filtering creates divergence free wind fields, by slightly modifying both the vertical

Name	Resolution (original)	Resolution (input to EMEP model)	Year
H50	$0.2^{\circ} \times 0.2^{\circ}$	50 km	2006,2007
H25	$0.2^{\circ}{ imes}0.2^{\circ}$	25 km	2006,2007
H20	$0.2^{\circ}{ imes}0.2^{\circ}$	$0.2^{\circ}{ imes}0.2^{\circ}$	2006,2007
H10	$0.1^{\circ} \times 0.1^{\circ}$	10km	2006

Table 7.1: Overview of the different sets of meteorological data used in the model runs.

and horizontal winds.

7.2 Emissions

Two different sets of gridded emission data have been made for the $50 \times 50 \text{ km}^2$, $25 \times 25 \text{ km}^2$ and $10 \times 10 \text{ km}^2$ polar stereographic (PS) grids, respectively, as well as for $0.2^\circ \times 0.2^\circ$ rotated spherical (RS) grids. One data set is produced by distributing the EMEP emissions in each $50 \times 50 \text{ km}^2$ grid cell equally among the finer resolution grid cells (EMEP₂₅ and EMEP₁₀), or interpolation to RS projection (EMEP₂₀).

In the other data set (EMEP+TNO₅₀, EMEP+TNO₂₅, EMEP+TNO₂₀ and EMEP +TNO₁₀) the emissions have been re-gridded based on a high resolution emission database developed by TNO for the EU integrated project GEMS (Visschedijk et al. 2007). The country sectors have been kept as in the EMEP emissions in both data sets. An overview of the different sets of gridded emissions can be found in Table 7.2. The different sets of emissions were produced both for 2006 and 2007.

Name	Resolution	Distribution	
EMEP ₅₀	$50 \times 50 \text{ km}^2 \text{PS}$		
$EMEP_{25}$	$25 \times 25 \text{ km}^2 \text{ PS}$	EMEP ₅₀ grid cells divided into 4 cells	
$EMEP_{20}$	$0.2^{\circ} \times 0.2^{\circ} \text{ RS}$	EMEP ₅₀ grid cells interpolated to RS	
$EMEP_{10}$	$10 \times 10 \text{ km}^2 \text{ PS}$	EMEP ₅₀ grid cells divided into 25 cells	
EMEP+TNO ₅₀	$50 \times 50 \text{ km}^2 \text{ PS}$	TNO spatial distribution	
EMEP+TNO ₂₅	$25 \times 25 \text{ km}^2 \text{ PS}$	TNO spatial distribution	
EMEP+TNO ₂₀	$0.2^{\circ} \times 0.2^{\circ} \text{ RS}$	TNO spatial distribution	
EMEP+TNO ₁₀	$10 \times 10 \text{ km}^2 \text{ PS}$	TNO spatial distribution	

Table 7.2: Overview of the different sets of gridded emission data used in the model runs.

Name	Meteorology	Emissions	Year
H50	H50	$EMEP_{50}$	2006,2007
H50-TNO	H50	EMEP+TNO ₅₀	2006,2007
H25	H25	$EMEP_{25}$	2006,2007
H25-TNO	H25	EMEP+TNO ₂₅	2006,2007
H20	H20	$EMEP_{20}$	2006,2007
H20-TNO	H20	EMEP+TNO ₂₀	2006,2007
H10	H10	$EMEP_{10}$	2007
H10-TNO	H10	$EMEP+TNO_{10}$	2007

Table 7.3: Overview of the different model runs. For a definition of meteorology and emissions, see Tables 7.1 and 7.2, respectively.

7.3 Landuse

As noted in Fagerli et al. (2008), very high resolution landuse data should in principal now be available from the combined CCE/SEI data base described in Cinderby et al. (2007), which would allow consistent landuse for any of the EMEP domain model runs. Unfortunately, problems with this data have still not been resolved. As with Fagerli et al. (2008), we therefore proceed with landuse derived from the basic 50 km data sets, and will improve upon these results once high-resolution data become available.

7.4 Comparison of model results and measurements

7.4.1 Acidifying and eutrophying compounds

We have compared the model results to all EMEP measurements available in 2006 and 2007. In order to have a consistent comparison between the different model runs, we have only used measurement sites that are within the smallest model domain (EMEP_{red}). Only a few sites (NO42, RU13) for a few components had to be excluded. In general, the bias between measurements and model results are relatively similar for the different model runs (changes in the order of \pm 5%), therefore we do not discuss changes in absolute levels. Furthermore, concentration levels are relatively sensitive to model parameterizations of e.g. dry deposition and chemistry. Therefore, a decrease of bias between measurements does not necessarily mean that the model is better - it can easily compare better to the measurements for the wrong reasons. Correlation between measurements and model results (spatial and temporal) is a better measure for model performance, thus we focus on those in the discussion in the following sections.

Tables 7.4-7.5 show that in general increased resolution, in either the meteorology
Table 7.4: Comparison between model results and observations (air concentrations) for 2006 and 2007 (spatial correlation coefficient). $NH_x=NH_3+NH_4^+$, $xNO_3=HNO_3+NO_3^-$. An overview of the different model runs is given in Table 7.3.

	Year	H50 H	50-TNO	H25 H	25-TNO	H20 H	120-TNO	H10 H	110-TNO
NO_2	2006	0.58	0.65	0.62	0.69	0.63	0.68	0.63	0.69
	2007	0.73	0.77	0.76	0.83	0.75	0.81		
SO_2	2006	0.62	0.62	0.60	0.61	0.59	0.59	0.61	0.62
	2007	0.62	0.61	0.62	0.65	0.62	0.67		
SO_4^{2-}	2006	0.74	0.76	0.73	0.76	0.74	0.76	0.79	0.79
	2007	0.64	0.65	0.64	0.65	0.64	0.65		
NH ₃	2006	0.44	0.48	0.49	0.52	0.50	0.47	0.59	0.60
	2007	0.93	0.91	0.93	0.94	0.89	0.93		
NH_4^+	2006	0.78	0.80	0.77	0.80	0.76	0.79	0.82	0.84
	2007	0.63	0.68	0.63	0.68	0.64	0.68		
NH_x	2006	0.65	0.78	0.67	0.78	0.68	0.77	0.66	0.74
	2007	0.79	0.84	0.78	0.82	0.75	0.81		
HNO ₃	2006	0.09	0.13	0.11	0.13	0.35	0.44	0.23	0.28
	2007	0.49	0.51	0.47	0.47	0.64	0.67		
xNO ₃	2006	0.83	0.83	0.81	0.81	0.84	0.84	0.83	0.83
	2007	0.87	0.86	0.84	0.84	0.85	0.85		
NO_3^-	2006	0.82	0.83	0.79	0.81	0.78	0.79	0.82	0.83
	2007	0.73	0.77	0.70	0.73	0.69	0.71		

or the emission fields, leads to improved model performance. This is particularly true for the primary components NO_2 and NH_3 . The largest improvement is seen for NH_3 in 2006, where the spatial correlation coefficient increase from 0.44 to 0.60 as a result of meteorology alone. For SO_2 , there is no improvement in spatial correlation due to increased resolution of meteorology. Both NO_x and ammonia emissions are to a large extent released close to the surface (from traffic and agriculture, respectively), whilst a dominant part of SO_2 emissions comes from industrial sources where emissions are released from high stacks, and travel further before impacting ground-level. Groundlevel concentrations of NO_x and NH_3 are thus more sensitive to changes in the local scale, whether in meteorology or emissions. Meteorological influences include such factors as stability or wind-field changes, we have not yet analysed such factors in detail.

The spatial correlation for NH_3 is very different in 2006 and 2007 (r~0.5 and r~0.9, respectively). However, this is a result of the difference in number and characteristics of the sites that reported measurements in these two years. In 2007, ammonia concentrations ranging from very low concentrations (e.g. Norway) to very high concentrations (The Netherlands) were reported, and in general the high spatial correlation between model results and observations mirrors the gradient in emissions over Europe,

Table 7.5: Comparison between model results and observations (wet depositions and
concentration in precipitation.) for 2006 and 2007 (spatial correlation coefficient).
SOX = wet deposition of sulphur, OXN = wet deposition of oxidized nitrogen, RDN =
wet deposition of reduced nitrogen. XX_c = concentration in precipitation. An overview
of the different model runs is given in Table 7.3.

	Year	H50 H	50-TNO	H25 H	25-TNO	H20 H	20-TNO	H10 H	[10-TNO
SOX	2006	0.57	0.55	0.61	0.62	0.58	0.60	0.62	0.63
	2007	0.59	0.59	0.62	0.56	0.61	0.65		
SOX_c	2006	0.72	0.70	0.73	0.73	0.70	0.70	0.66	0.64
	2007	0.65	0.64	0.64	0.60	0.61	0.64		
RDN	2006	0.80	0.77	0.82	0.79	0.82	0.78	0.80	0.77
	2007	0.74	0.73	0.74	0.72	0.72	0.69		
RDN_c	2006	0.69	0.71	0.69	0.72	0.70	0.73	0.63	0.65
	2007	0.68	0.72	0.66	0.69	0.65	0.70		
OXN	2006	0.70	0.69	0.73	0.73	0.76	0.75	0.76	0.76
	2007	0.68	0.66	0.74	0.73	0.74	0.73		
OXN_c	2006	0.68	0.68	0.66	0.66	0.67	0.66	0.58	0.55
	2007	0.66	0.64	0.65	0.63	0.67	0.66		
Prec	2006	0.73	0.73	0.72	0.72	0.68	0.68	0.73	0.73
	2007	0.65	0.65	0.68	0.68	0.67	0.67		

which are rather well captured. In 2006, however, ammonia concentration from The Netherlands were not reported. Therefore, the rather poor spatial correlation in 2006 reflects problems in reproducing spatial variations in areas with relatively similar concentrations. It should be noted, however, that the number of sites that measure NH_3 is rather limited (~ 15) and that most of the measurements are filter-pack measurements which can be biased.

For the secondary components $(SO_4^{2-}, NO_3^{-} \text{ and } NH_4^+)$, the improvement of spatial correlation with resolution is less clear, although the results from model run H10 is better or equal to H50 for all three components for 2006, with increases in both meteorological and emissions resolution providing the best performance. Still, the concentrations of the secondary components are a result of long range transport (because of their longer life time than the primary components), thus they are less sensitive to the resolution of meteorology or emissions.

7.4.2 Effects of improved resolution on PM model results

In this section, we summarize the main findings as regards the effect of using finer grid resolutions on model calculations of Particulate Matter (PM). The study is based on four model runs for the year of 2006: the base run on $50 \times 50 \text{ km}^2$ using EMEP reported emissions (H50), and three runs using EMEP sector total emissions gridded

Table 7.6: The spatial correlation (r) between modelled and observed particle components, PM₁₀, PM_{2.5}, SIA and Na⁺ for 2006. An overview of the different model runs is given in Table 7.3.

Comp	H20	H50-1NO	H25-INO	HI0-INO
PM_{10}	0.46	0.49	0.54	0.56
$PM_{2.5}$	0.66	0.67	0.73	0.71
SIA	0.87	0.88	0.87	0.88
Na ⁺	0.83	0.83	0.88	0.89

|1150| |150| TNO |1105| TNO |1110| TNO |

according to TNO distribution: on $50 \times 50 \text{ km}^2$ (H50-TNO), on $25 \times 25 \text{ km}^2$ (H25-TNO), and 10×10 km² (H10-TNO). All runs were performed on the EMEP grid on a polar stereographic projection.

Comparison of the concentration fields (not presented here) showed that the differences in annual mean PM_{10} and $PM_{2.5}$ are within 5-10% over most of EMEP area when calculated with these three resolutions. Somewhat larger differences (10-20%) are found in association with large emission sources, particularly in cities, and especially for primary PM.

Table 7.6 provides the comparison statistics between model calculated and observed PM_{10} , $PM_{2.5}$, SIA and Na⁺ for 2006, showing the spatial correlation coefficient. There is virtually no effect of using finer resolutions on the model bias for PM_{10} and $PM_{2.5}$, and only a slight bias decrease is found for SIA, so these changes are not shown. In any case, the model results for PM shown here do not include secondary organic aerosol (SOA) or dust, so one should expect a bias. The SOA contribution is discussed in EMEP Report 4/2009 (EMEP CCC & MSC-W 2009).

For the same resolution of 50×50 km², the models underestimation of PM₁₀ increases from 34% when using official EMEP emissions to 41% when EMEP emissions are re-gridded based on TNO distribution. The spatial correlation between calculated and measured PM_{10} and $PM_{2.5}$ generally gets better as the grid resolution becomes finer. For SIA, the spatial correlation remains about the same for the model results at all three resolution. This suggests that the improvement of correlation for PM should be due to improvement in the spatial distribution of primary particles. This suggestion supports the results discussed in the previous section that the use of finer resolutions improves the spatial correlation of primary pollutants, while not affecting much the correlation of secondary components.

7.5 **Fine resolution source-receptor matrices**

The source-receptor calculations on fine scale (25 km) are very CPU demanding. Therefore, this first analysis is based on 3 example countries (The United Kingdom, The Netherlands and Germany). These countries are chosen because of their different characteristics; The UK is often upwind of continental sources, and hence more isolated, with a dominating part of the deposition originating from sources in the country itself. The Netherlands and Germany contrast each other by size (but they both have relatively large emissions); The Netherlands is a small country with most of its deposition originating from sources outside the country, whilst in Germany a much larger part of the emissions is deposited within the country.

Three different sets of model runs have been performed based on H50, H25 and H25-TNO (see Table 7.3 for a description of the runs). Only 3 pollutants are covered here; SO_x , fine primary particulate matter ($PPM_{2.5}$) and coarse primary particulate matter (PPM_{co}). Since model calculations have been done only for 3 different countries, only the export budgets will be discussed here.

 $PPM_{2.5}$ and PPM_{co} are chemically inert, thus there are no interactions between scale and chemical non-linearities. This is not totally true for SO_x , as the SO_2 oxidation depends on OH, H_2O_2 and O_3 (the modelled levels of these components might change somewhat as a result of changes in model resolution). However, these 3 pollutants are the 'simplest' examples, and the effect might be larger for NO_x and O_3 where chemical non-linearities play a much larger role.

7.5.1 Results

Effect of meteorology

In order to separate out the effect of the resolution of meteorology from the combined effect of meteorology and emissions, we first compare the two runs where only the resolution of meteorology is changed and emissions are identical (H50 and H25). For all the 3 countries analysed, there is very little difference in the export budgets between the H50 and H25 runs. For the wet deposition of SO_x , the differences are almost zero (Figure 7.2), whilst they are somewhat larger for $PM_{2.5}$ (Figure 7.3, up to 5% for the largest contribution) and PM_{co} (up to 3% for the largest contribution). The differences are larger for the small contributions (since these in general result from emissions/components that have been transported over longer distances), but the order and magnitude of the larger contributions are the same. Differences between SO_x and $PPM_{2.5}$ are likely due to different residence times, since $PPM_{2.5}$ is pure-particulate, whereas SO_x is a mixture of gaseous SO_2 and particulate SO_4^{2-} . (In general, fine particles have a longer residence time in the atmosphere than SO_2).

Effect of emissions

As shown in Figures 7.2 and 7.3, the effect of the emissions is much larger than the effect of scale in the meteorology. However, this is not purely an effect of the resolution of the emissions. Although the sector totals for each country are the same in the TNO emissions and the EMEP emissions, the spatial distribution is somewhat different, e.g.

Contributions from Germany to wet deposition of SOx (15% reduction of SOx emissions)

Contributions from GB to wet deposition of SOx (15% reduction of SOx)

Contributions from NL (15% reduction of SOx emissions)

Figure 7.2: Contributions from Germany, Great Britain and The Netherlands (from 15% of SO_x emissions in the respective countries) to wet deposition of oxidized sulphur. Only the largest contributions are shown. H50=EMEP model run in 50 km, H25=EMEP model run in 25 km and EMEP emissions (effectively 50 km), H25-TNO=EMEP model run in 25 km and TNO emissions.

Contributions from Germany to PPM2.5 (15% reduction of PPM2.5)

Contributions from NL to PPM2.5 (15% reduction of PPM2.5)

Figure 7.3: Contributions from Germany and The Netherlands (from 15% of SO_x emissions in the respective countries) to $PPM_{2.5}$. Only the largest contributions are shown. H50=EMEP model run in 50 km, H25=EMEP model run in 25 km and EMEP emissions (effectively 50 km), H25-TNO=EMEP model run in 25 km and TNO emissions.

an aggregation of the TNO 25 km emissions into 50 km would not be equal to EMEP 50 km spatial distribution of emissions.

For Germany and the Netherlands, the effect of the re-distribution (and finer resolution) of emissions is rather small (a maximum difference of 10% for the largest contributions). For the UK (GB), however, the export from GB to the North Sea and the Atlantic is reduced by almost 20% in the H25-TNO run compared to H25, whilst the indigenous contribution (and the contribution to Germany) increased by more than 25%. In the EMEP emission data, a substantial part of emissions of SO_x (from oil installations) is located in the sea areas, whilst there are no SO_x emissions in the sea areas in the TNO data. It is evident that more emissions of SO_x in the sea areas in the H25 run lead to larger depositions to the North Sea and the Atlantic Sea, and smaller indigenous contributions.

7.6 Conclusions

Overall the performance of the EMEP model improves with increased resolution. For primary components, both increased resolution of meteorology and emissions contribute to the improvement. For secondary components and wet depositions the results are less clear. With a 10 km resolution, the EMEP model is approaching suburban scale, and future work will include comparison with a network (AIRBASE) that contains sites that represent this scale and not just the background (like the EMEP network).

A preliminary analysis of the effect of scale (excluding the effect of fine resolution emissions) on source-receptor matrices shows that increasing the resolution of the model (from 50 km to 25 km) only has a minor impact on the results, at least for the largest contributions from one country to another. However, the analysis has only been done for SO_x , $PPM_{2.5}$ and PPM_{co} , and this conclusion might change for components for which chemical non-linearities are important (e.g. O_3 and NO_x). In general, the effect of scale on source-receptor calculations is significantly smaller than the effect of using different meteorological drivers (chapter 6) or meteorological variability (van Loon et al. 2005).

The effect of improving the scale of emissions cannot be judged directly from this analysis since the aggregated fine scale emission (to 50 km) does not equal the EMEP 50 km emissions. However, it is clear that different spatial distribution of emissions (as in the two data sets used; TNO and EMEP) can lead to large differences (in the order of 25%) in the calculated contributions from one country to another.

This study has been limited to some extent by the lack of fine-scale landuse data. These runs need to be repeated when such data become available, and then a more systematic study of the impacts of scale on model results and performance can be undertaken.

References

- Cinderby, S., Emberson, L., Owen, A., and Ashmore, M.: LRTAP land cover map of Europe, in CCE Progress Report 2007, pp. 59–70, Coordination Centre for Effects, RIVM, Bilthoven, The Netherlands, 2007.
- EMEP CCC & MSC-W: Transboundary Particulate Matter in Europe, Status report 4/2009, EMEP Report 4/2009, The Norwegian Institute for Air Research (NILU), Kjeller, Norway, 2009.
- Fagerli, H., Wind, P., Gauss, M., Nyíri, A., Simpson, D., and Tsyro, S.: Improved resolution in EMEP models, in Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe in 2006. EMEP Status Report 1/2008, pp. 89–104, The Norwegian Meteorological Institute, Oslo, Norway, 2008.
- van Loon, M., Wind, P., and Tarrason, L.: Meteorological variability in source allocation: Transboundary contributions across Europe, in In Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe. EMEP Status Report 1/2005, pp. 89–107, The Norwegian Meteorological Institute, Oslo, Norway, 2005.
- Visschedijk, A., Zandveld, P., and Denier van der Gon, H.: A high resolution gridded European emission database for the EU integrated project GEMS, Tech. Rep. TNO report 2007-A-R0233/B, TNO Built Environment and Geosciences, 2007.

CHAPTER 8

Comparison of modelled nitrogen deposition and nitrogen concentrations in mosses

Harry Harmens, David Cooper, David Norris, Winfried Schröder, Roland Pesch, Marcel Holy and Hilde Fagerli

The European moss biomonitoring network was originally established in 1990 to estimate atmospheric heavy metal deposition at the European scale. Since 2001, the network has been coordinated by the ICP Vegetation, a subsidiary body of the UNECE Long-range Transboundary Air Pollution Convention (Harmens et al. 2008b).

The European moss survey has been repeated at five-yearly intervals. The most recent European moss survey was conducted in 2005/6. For the first time, 16 countries also determined the total N concentration in mosses at a total of almost 3,000 sites (Harmens et al. 2008a). The 2005/6 survey was the first attempt to establish whether mosses can be used as biomonitors of atmospheric N deposition at the European scale. Although a number of studies have shown the potential of mosses as monitors of atmospheric N deposition (see Harmens et al. 2008a), the robustness of the relationship between measured site-specific N deposition rates and concentrations in mosses at the European scale is not known.

In this preliminary study, EMEP modelled N deposition was compared to the 2005/6 data on N concentrations. This exercise may be regarded as a cross validation of moss data and EMEP model data, both because of potential limitations in the use of the moss data as monitors of atmospheric N deposition and due to uncertainties in the modelled N deposition (including uncertainties in emissions).

8.1 Results

The lowest total N concentrations in mosses were generally observed in northern Finland and northern parts of the UK (Figure 8.1). In Finland there was a clear north-south gradient which continued into the Baltic States. In the UK, locally high concentrations were found in the Midlands and South-East. The highest concentrations were found in parts of Western, Central and Eastern Europe, in particular in Belgium, Germany, Slovakia, Slovenia and parts of Bulgaria and France. The same spatial distribution is found in the EMEP modelled N deposition, except that the modelled N deposition tends to be lower in Eastern Europe.

Figure 8.1: Mean total nitrogen concentration in mosses per EMEP grid cell [%] in 2005/2006 (a) and modelled nitrogen deposition [kmol $ha^{-1}y^{-1}$] in 2004 (b).

However, the relationship between total N concentration in mosses and modelled total N deposition shows considerable scatter (Figure 8.2). Some of the scatter can be explained by relating site-specific N concentrations in mosses with N depositions averaged per $50 \times 50 \text{ km}^2$ EMEP grid. Actual deposition values vary considerably within each EMEP grid cell due to for instance topography, vegetation, local pollution sources and climate. The apparent asymptotic relationship shows saturation of the total N in mosses above a N deposition rate of approximately 10 kg ha⁻¹y⁻¹. It is not clear, however, whether this is due to an overestimation of modelled deposition at these sites, or that it indicates a non-linear relation between nitrogen deposition and total N concentration in mosses. For example in Switzerland, a significant linear relationship was found when based on measured site-specific bulk N deposition rates (Thöni et al. 2005). There is a need to measure atmospheric N deposition at selected

Figure 8.2: Relationship between EMEP modelled total nitrogen deposition (2004) and averaged nitrogen concentrations in mosses (2005/2006) across Europe.

moss sampling sites in other countries too in order to further investigate the robustness of the relationship with total N concentration in mosses.

The data on N concentrations in mosses have also been compared statistically to air concentrations of nitrogen species and dry and wet deposition of reduced and oxidized nitrogen, applying methods described by Pesch et al. (2008). Additional factors that are expected to influence the total nitrogen concentrations in mosses (for instance land use, population and livestock density, altitude, precipitation) were also included in the analysis. Moderate Spearman rank correlations coefficients (i.e. 0.5 < r < 0.7) were found between nitrogen concentrations in mosses and EMEP modelled N concentrations and depositions, independent of form. The total N concentration in mosses appears to mirror land use-related atmospheric N deposition across Europe to a high degree.

8.2 Conclusions

The data on N concentrations in mosses from the European moss survey represent a valuable data set for evaluation of the EMEP modelled N deposition. The preliminary comparison has shown that the spatial pattern over Europe are the same in the mosses data and the modelled data. There are, however, some inconsistencies (for instance relatively lower N concentrations in mosses in Eastern Europe). It is not clear whether this is due to uncertainties in the model results or if there are other factors in the mosses data that need to be taken into account when applying the mosses data as monitors for N deposition. This will require further investigation.

Future work will include a comparison of fine resolution EMEP model runs (10 km

and 25 km grid resolutions) with the N concentrations in mosses. Possibly, this will reduce the scatter between the mosses data and the modelled deposition. In forthcoming analyses, we will also include an average of deposition over several years.

References

- Harmens, H., Norris, D., Cooper, D., Hall, J., and the participants of the moss survey: Spatial trends in nitrogen concentrations in mosses across Europe in 2005/2006, 2008a.
- Harmens, H., Norris, D., and the participants of the moss survey: Spatial and temporal trends in heavy metal accumulation in mosses in Europe (1990-2005), 2008b.
- Pesch, R., Schröder, W., Schmidt, G., and Genssler, L.: Monitoring nitrogen accumulation in mosses in central European forests, Environmetal Pollution, 155, 528–536, 2008.
- Thöni, L., Matthaei, D., Seitler, E., and Bergamini, A.: Deposition von Luftschadstoffen in der Schweiz. Moosanalysen 1990 - 2005, 2005.

CHAPTER 9

Modelled and observed NO₂ tropospheric column and surface concentrations

Alvaro Valdebenito and Ann Mari Fjæraa

Satellite products have an excellent spatial coverage on a resolution comparable to the model results and data availability is limited only by overpass time and cloudiness. On the other hand ground stations offer 24 hour coverage over an area which may or may not be representative for the average value in the model grid square. Data assimilation offers a method to combine both types of observations and model results into a consistent dataset. But before this is possible the relation between both measurement types and the model results needs to be carefully characterised. For instance, the development and operation of a 4D-Var assimilation system would require the characterisation of the model bias against each observation type and an error estimate for each observation type on each location and the covariances between these errors.

The Ozone Monitoring Instrument (OMI) provides daily global coverage with a $13 \times 24 \ km^2$ resolution. NO₂ tropospheric column retrieved from OMI observations is made publicly available on near real time (Boersma et al. 2007) by TEMIS (www.temis.nl). From these resources a small dataset of satellite tracks for June 2007 was compiled and the values for the daily overpass over three EMEP sites were extracted. Additionally to the satellite data co-located over the EMEP sites the minimum and maximum values over a 50 km radius around the sites were also extracted. This was done in order to evaluate the spatial variability associated with the co-located satellite data, hourly observations for NO₂ surface concentrations and model result are presented in this study.

9.1 Results

Figure 9.1 shows the results for the preliminary comparison of NO_2 tropospheric column and surface concentrations from both model results and observations. The inspection of the model hourly output (not shown here) indicates a correlation between tropospheric column and surface concentration. This is consequence of the large contribution of the four lowermost model levels to the tropospheric column, which account for more than 50 % of the column. These levels expand up to around half kilometer and are strongly correlated to the surface concentrations.

The variability of the satellite product at overpass time within a radius of 50 km (red errorbars) show a range comparable to the model daily variability for the same location. The current size of the observational dataset used in this preliminary study is too small to quantify the correlation between satellite, surface observations and their modelled counterparts. A larger observational dataset would also allow to characterise the effect of seasonality and to screen for artifacts on the satellite retrieval (e.g. cloud contamination).

9.2 Conclusions

The preliminary comparison of satellite NO_2 tropospheric column and model results indicates that the spatial variability of the satellite product within 50 km is comparable to the model daily variability over the surface observation site. Hourly model results indicate a correlation between tropospheric column and surface concentration. The studied period is too short to quantify the correlation between both observation types and model results.

On a data assimilation system, the errors estimates for different observations are usually assumed uncorrelated. In order to use both observation types on a data assimilation system the relation between observed NO_2 tropospheric column and surface concentration needs to be statistically characterised over a much larger observational dataset. This would allow the assimilation system to account for the effects of the correlation between observation errors. For this purpose the co-located OMI dataset will be expanded in order to include more than 30 EMEP sites for which hourly NO_2 surface concentrations observations are available for 2007.

References

Boersma, K., Eskes, H., Veefkind, J., Brinksma, E., van der A, R., Sneep, M., van den Oord, G., Levelt, P., Stammes, P., Gleason, J., and Bucsela, E.: Near-real time retrieval of tropospheric NO₂ from OMI, Atmos. Chem. and Physics, 7, 2103–2118, http://www.atmos-chem-phys.net/7/2103/2007/, 2007.

Figure 9.1: Comparison of NO₂ tropospheric column and surface concentration from model results and observations over three EMEP sites for June 2007. Model (blue line), observed surface concentrations (blue markers) $[\mu g/m^3]$, model (red line) and OMI NO₂ tropospheric column (red markers) $[10^{15} molec./cm^2]$ at the time of the satellite overpass. The vertical errorbars denote the minimum and maximum for OMI NO₂ tropospheric column over a 50 km radius around the site.

Part IV Appendixes

APPENDIX A

National emission trends for 1997–2006

This appendix contains trends of national emission data for main pollutants and primary particle emissions in the old EMEP domain for the years 1997–2006. These emissions were used for the source-receptor trend studies.

The national total emissions for 1997–2004 have been derived from the 2006 official data submissions to UN-ECE CLRTAP (Vestreng et al. 2006), while the emissions for 2005 and 2006 have been derived from the respective 2007 (Vestreng et al. 2007) and 2008 (Mareckova et al. 2008) official data submissions to UN-ECE CLRTAP.

Note that emissions in this appendix are given in different units than used elsewhere in this report in order to keep consistency with the reported data.

References

- Mareckova, K., Wankmüller, R., Anderl, M., Muik, B., Poupa, S., and Wiesser, M.: Inventory review 2008. Emission data reported under the LRTAP Convention and NEC Directive. Stage 1 and 2 review. Status of gridded data, EMEP/CEIP 1/2008, EEA/CEIP Vienna, 2008.
- Vestreng, V., Riegler, E., Adams, M., Kindbom, K., Pacyna, J., van der Gon, H. D., Reis, S., and Travnikov, O.: Inventory Review 2006. Emission data reported to the LRTAP Convention and NEC Directive. Stage 1, 2 and 3 review. Evaluation of inventories of HMs and POPs., EMEP/MSC-W 1/2006, The Norwegian Meteorological Institute, Oslo, Norway, 2006.
- Vestreng, V., Mareckova, K., Kakareka, S., Malchykhina, A., and Kukharchyk, T.: Inventory Review 2007. Emission data reported to the LRTAP Convention and NEC directive. Stage 1 and 2 review. Review of gridded data and Review of PM inventories in Belarus, Republic of Moldova, Russian Federation and Ukraine., EMEP/MSC-W 1/2007, The Norwegian Meteorological Institute, Oslo, Norway, 2007.

Albania 21 25 29 32 32 32 33 33 Amsenia 14 13 12 111 101 9 8 8 77 Austria 202 182 162 154 146 138 130 130 120 120 Belarus 221 222 182 162 114 146 138 130 130 110 Belginn 223 224 188 171 160 142 422 422 425 427 427 427 Bugaria 1305 1215 942 948 90 664 94 929 900 67 35 67 53 67 53 67 53 67 53 67 63 63 53 67 53 67 53 67 63 53 627 63 53 627 63 53 63 63	Area/Year	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Armonia 14 13 12 11 11 10 9 8 8 7 Austria 40 34 32 33 33 32 9 22 28 Aczbaljan 222 202 182 162 117 107 77 103 10 Belaius 221 224 186 117 116 115 147 154 147 133 Boxia and Herzogovina 384 396 408 420 422 423 425 427 427 422 Bulgaria 1035 151 471 474 99 900 63 64 75 45 42 24 24 24 30 23 22 25 Cercah Republic 700 443 260 254 248 235 232 247 24 24 30 03 23 22 25 256 257 251	Albania	21	25	29	32	32	32	32	32	32	31
Austria 40 36 34 32 133 33 33 29 20 128 Azerbaijan 222 202 182 162 126 117 107 97 103 91 Belgrum 223 204 186 171 169 150 147 154 147 149 Bosnia and Herzgovina 384 366 408 420 422 423 425 427 427 429 Balgaria 1365 121 942 918 900 663 68 75 54 42 36 63 75 54 42 36 63 75 54 43 43 43 43 57 72 74 43 70 78 63 77 74 50 613 505 55 5 5 14 Contai 66 6 77 76 6 6 5 55	Armenia	14	13	12	11	11	10	9	8	8	7
Azerbajan 222 202 182 1162 114 146 138 130 130 120 Belgum 223 204 186 171 169 150 147 154 147 139 Boaria and Herzegovina 1364 1251 942 918 960 644 944 929 900 677 Croatia 80 89 90 60 633 68 73 85 60 63 Cyprus 48 490 915 51 51 54 51 45 54 42 36 62 23 227 219 211 Demark 95 77 73 61 50 50 50 50 50 55 54 44 455 52 560 55 55 54 445 452 666 75 55 55 55 55 55 55 55 55 55 <td< td=""><td>Austria</td><td>40</td><td>36</td><td>34</td><td>32</td><td>33</td><td>33</td><td>33</td><td>29</td><td>26</td><td>28</td></td<>	Austria	40	36	34	32	33	33	33	29	26	28
Belarum 271 235 198 1102 117 107 97 103 911 Belgium 223 224 186 171 160 150 147 147 143 139 Bosnia and Herzegovina 1365 1251 942 918 960 664 874 427 427 429 Bulgaria 1365 1251 942 918 960 664 875 855 600 63 Croatia 48 49 51 511 447 51 45 45 452 423 625 727 219 211 Demmark 99 70 64 64 74 87 78 88 60 88 77 71 6 64 57 74 86 50 55 51 141 Germany 1197 956 776 63 64 400 303 329 120 129 <t< td=""><td>Azerbaijan</td><td>222</td><td>202</td><td>182</td><td>162</td><td>154</td><td>146</td><td>138</td><td>130</td><td>130</td><td>120</td></t<>	Azerbaijan	222	202	182	162	154	146	138	130	130	120
Belguin 223 204 186 171 170 169 150 147 147 147 149 Boxnia and Herzegovina 384 396 406 420 423 425 427 429 429 Bougaria 1656 1251 942 918 969 964 994 429 900 877 Croatia 80 89 90 60 633 68 75 85 60 63 Cypus 48 491 51 51 51 51 51 51 51 52 22 25 Estonia 110 103 507 510 503 844 465 452 Groatia 69 90 87 74 485 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 <	Belarus	271	235	198	162	126	117	107	97	103	91
Bosia and Herzegovina 384 396 498 942 943 943 945 946 994 929 900 877 Bulgaria 1365 1251 942 918 900 60 63 68 75 855 60 63 Cynus 48 49 51 51 47 51 45 45 42 30 23 221 211 Denmark 95 73 53 277 24 24 30 23 22 255 Eatonia 111 103 97 96 62 88 101 90 77 7 Finland 99 98 877 63 628 583 550 550 558 557 54 137 555 Georgia 1197 956 776 63 628 585 550 550 558 579 560 558 579 560	Belgium	223	204	186	171	169	150	147	154	147	139
Bulgaria 1365 1251 942 918 960 964 994 920 900 877 Croatia 880 890 601 511 447 511 445 445 445 425 322 222 2129 211 Demmark 915 73 533 27 24 424 30 232 222 255 Estonia 117 103 977 744 485 70 98 80 977 711 France 706 617 705 613 550 505 550 550 550 555 556 560 Georgia 6 6 777 70 6 60 538 559 550 550 550 550 556 Georgia 659 59 579 578 578 578 578 578 541 449 44 45 445 439 445 <td>Bosnia and Herzegovina</td> <td>384</td> <td>396</td> <td>408</td> <td>420</td> <td>422</td> <td>423</td> <td>425</td> <td>427</td> <td>427</td> <td>429</td>	Bosnia and Herzegovina	384	396	408	420	422	423	425	427	427	429
Croatia 80 84 49 65 64 75 84 44 55 1 47 51 445 442 36 Cacch Republic 700 443 260 264 248 235 232 227 219 211 Demark 95 73 53 27 24 24 40 00 232 225 Estonia 170 103 97 96 92 288 101 90 77 16 Georgia 6 6 7 7 6 6 5 5 53 541 Gereac 1107 956 770 630 628 588 593 53 533 536 Greace 1132 955 590 570 546 443 449 43 44 44 44 44 44 44 44 44 44 44 44 44 44	Bulgaria	1365	1251	942	918	969	964	994	929	900	877
Cypns 48 49 51 51 47 51 47 51 47 54 748 723 52 723 52 723 52 723 723 723 723 723 723 723 723 723 723 723 723 723 723 724 724 724 724 724 724 724 734 735 737 717 717 Financ 706 817 705 613 550	Croatia	80	89	90	60	63	68	75	85	60	63
Czech Republic 700 443 260 264 248 233 223 223 225 Estonia 117 103 97 96 92 88 101 90 77 Finhand 99 90 877 74 85 79 98 83 69 85 Georgia 66 6 77 77 66 50 548 405 555 Greece 518 527 544 403 502 575 554 537 554 537 556 Greece 518 527 554 403 502 505 516 517 516	Cyprus	48	49	51	51	47	51	45	45	42	36
Denmark 95 73 53 27 24 24 30 23 22 25 Estonia 117 103 97 96 92 88 101 90 77 71 Financ 796 613 550 510 505 444 452 Georgia 6 6 77 77 6 6 55 559 560 558 Gereary 1197 956 776 630 628 588 595 559 560 558 Greece 518 527 544 493 502 570 480 330 240 132 131 Ialy 1132 995 899 752 7708 632 550 448 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 <t< td=""><td>Czech Republic</td><td>700</td><td>443</td><td>269</td><td>264</td><td>248</td><td>235</td><td>232</td><td>227</td><td>219</td><td>211</td></t<>	Czech Republic	700	443	269	264	248	235	232	227	219	211
Estonia 111 103 97 96 92 88 101 90 77 71 Financ 99 90 87 74 85 79 98 83 69 85 France 706 613 550 510 558 558 558 Grorpia 6 6 77 76 620 521 554 537 538 Greece 518 522 550 486 400 360 339 240 129 118 Iceland 166 176 171 131 126 98 72 708 632 506 44 44 45 433 Lavia 38 33 29 100 8 66 55 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44	Denmark	95	73	53	27	24	24	30	23	22	25
Finland 99 90 87 74 85 79 98 83 69 85 France 796 817 705 613 550 505 484 465 452 Georgia 6 6 7 776 630 628 588 595 557 558 Greace 518 552 590 486 400 300 339 240 129 118 Iceland 9 9 9 9 9 9 9 8 8 700 600 Italy 1132 955 850 550 486 466 445 442 44 43 Larvin 38 35 20 100 8 6 5 4 4 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 <t< td=""><td>Estonia</td><td>117</td><td>103</td><td>97</td><td>96</td><td>92</td><td>88</td><td>101</td><td>90</td><td>77</td><td>71</td></t<>	Estonia	117	103	97	96	92	88	101	90	77	71
France 790 817 705 613 550 510 505 484 465 452 Georgia 6 6 7 7 6 6 5 55 54 14 Germany 1197 956 776 630 628 588 555 550 560 558 Grecce 518 527 544 493 502 517 554 537 536 Huagary 659 592 590 486 400 309 20 9 103 120 120 133 140 44 44 44 44 44 44 44 44 44 44 44 <td< td=""><td>Finland</td><td>99</td><td>90</td><td>87</td><td>74</td><td>85</td><td>79</td><td>98</td><td>83</td><td>69</td><td>85</td></td<>	Finland	99	90	87	74	85	79	98	83	69	85
Georgia 6 6 7 77 6 6 5 5 14 Gernany 1197 956 776 630 628 588 595 559 550 553 Hungary 659 592 590 448 493 360 339 240 129 118 Lecland 9 9 9 9 9 9 6 76 71 70 60 Italy 1132 995 899 752 708 632 506 418 449 358 Kazakstan (KZ) 519 515 510 506 446 445 44	France	796	817	705	613	550	510	505	484	465	452
Germany 1197 956 776 630 628 588 559 550 558 Greece 518 527 544 4493 502 517 554 537 537 536 Imigary 659 592 590 448 4400 360 339 240 120 181 Lecland 190 9 9 9 9 9 9 9 72 708 632 506 418 400 506 418 425 432 433 Latvia 38 35 29 100 8 6 6 4 4 4 4 4 Latvia 38 35 29 10 8 6 5 433 44 4 4 4 4 4 4 Latvia 27 27 25 26 55 55 55 55 55 55 55 <	Georgia	6	6	7	7	6	6	5	5	5	14
Greece 518 527 544 403 502 517 554 537 537 538 Hungary 659 592 590 448 400 360 339 240 118 Iceland 9 9 9 9 9 868 768 771 700 600 Italy 1132 995 899 752 708 632 506 418 406 358 Latvia 38 35 29 100 88 66 45 42 425 425 398 Latviania 72 63 53 433 45 433 439 40 44 44 Mata 27 725 26 29 29 33 171 188 488 Netherlands 109 98 91 727 725 23 23 22 24 212 191 Norway 31	Germany	1197	956	776	630	628	588	595	559	560	558
Hungary 659 592 590 486 400 360 339 240 129 118 Iceland 9 103 103 104 44 44 44 44 44 44 44 44 44 44 41 41 46 51	Greece	518	527	544	493	502	517	554	537	537	536
Iceland 19 9 9 9 9 9 9 8 8 Ireland 116 176 157 131 126 96 77 70 60 Italy 1132 995 782 778 662 506 448 445 425 425 398 Latvia 38 35 29 100 8 66 445 442 44 <t< td=""><td>Hungary</td><td>659</td><td>592</td><td>590</td><td>486</td><td>400</td><td>360</td><td>339</td><td>240</td><td>129</td><td>118</td></t<>	Hungary	659	592	590	486	400	360	339	240	129	118
Ireland1166176157131126969767170600Italy1132995899752708632506418496358Kazakhsan (KZ)5195155105064864466445425425398Latvia383329100866544444444Lithuania77265343445433940044443Luxembourg66654444444444444Malta272725262929331711818Montenegro58575655535250484848Nerway31302927252323232421Poland2185190217241507156414551375128612221195Portugal292341341306294294200203215190Republic of Moldova614559728783734685772863Romania835111649721783734685727863Solvakia202179171127131103106978888Slovakia202179171127	Iceland	9	9	9	9	9	9	9	9	8	8
Italy1132995899752708632506418496358Kazakhstan (KZ)519510510506486466445425425398Latvia38352910865444 <td>Ireland</td> <td>166</td> <td>176</td> <td>157</td> <td>131</td> <td>126</td> <td>96</td> <td>76</td> <td>71</td> <td>70</td> <td>60</td>	Ireland	166	176	157	131	126	96	76	71	70	60
Kazakhstan (KZ) 519 515 510 506 486 466 445 425 425 398 Latvia 38 335 29 10 8 66 5 44 4 4 3 Lithuania 72 63 53 43 45 43 49 44 44 Mala 27 27 25 26 29 29 33 177 188 188 Montenegro 58 57 56 55 53 52 50 448 48 48 Norway 31 30 29 27 25 23 23 25 24 21 Poland 2185 1902 1724 1507 1564 1455 1375 128 122 115 13 16 Republic of Moldova 61 45 29 2431 2263 2162 2061 1969 88 173	Italy	1132	995	899	752	708	632	506	418	496	358
Latvia 38 35 29 10 8 6 5 4 4 4 Lithuania 72 63 53 43 44 4 4 4 Luxembourg 6 6 5 4 4 4 4 4 Mata 27 27 25 26 29 33 17 18 18 Montenegro 58 57 56 55 53 52 50 48 48 48 Netherlands 109 98 91 72 73 65 63 66 62 64 Norway 31 30 29 27 75 23 23 25 724 221 115 Poland 2185 1902 174 1301 120 120 122 1155 135 136 136 361 362 373 868 1727 863 1727	Kazakhstan (KZ)	519	515	510	506	486	466	445	425	425	398
Lithuania 72 63 53 43 45 43 39 40 44 44 Luxembourg 6 6 5 4 4 4 4 4 4 4 4 4 Malta 27 72 25 26 29 29 33 17 18 18 Montenegro 58 57 56 55 53 52 50 48 48 48 Netherlands 109 98 91 72 73 65 63 66 62 64 Norway 31 30 29 27 25 23 23 23 215 195 Portugal 292 341 306 294 294 200 203 215 195 Republic of Moldova 61 45 29 131 102 103 128 1858 1858 1852 172 863 <td>Latvia</td> <td>38</td> <td>35</td> <td>29</td> <td>10</td> <td>8</td> <td>6</td> <td>5</td> <td>4</td> <td>4</td> <td>3</td>	Latvia	38	35	29	10	8	6	5	4	4	3
Luxembourg 6 6 5 4 4 4 4 4 4 Malta 27 27 25 26 29 23 31 17 18 18 Montenegro 58 57 55 53 52 50 48 48 48 Norway 31 30 29 27 25 23 23 25 24 211 Poland 2185 1902 1724 1507 1564 1455 1375 1286 1222 1195 Portugal 292 341 341 306 294 200 203 215 190 Republic of Moldova 61 45 29 13 12 15 13 16 Romania 835 811 689 727 832 783 734 685 727 863 Stovakia 202 171 121 131 103	Lithuania	72	63	53	43	45	43	39	40	44	43
Malta 27 27 25 26 29 23 17 18 18 Montenegro 58 57 56 55 53 52 50 48 48 48 Netherlands 109 98 91 72 73 65 63 66 62 64 Norway 31 30 29 27 25 23 23 25 24 21 Poland 2185 1902 1724 1507 1564 1455 1375 1286 1222 1190 Republic of Moldova 61 45 29 13 12 15 21 15 13 16 Romania 835 811 689 727 832 783 734 685 727 863 Russian Federation 2766 2599 2431 2163 2162 2061 1960 1858 1858 Slovakia 202	Luxembourg	6	6	5	4	4	4	4	4	4	4
Monenegro 58 57 56 55 53 52 50 48 48 Netherlands 109 98 91 72 73 65 63 66 62 64 Norway 31 30 29 277 25 23 23 25 24 211 Poland 2185 1902 1724 1507 1564 1455 1375 1286 1222 1195 Portugal 292 341 341 306 294 200 203 215 190 Republic of Moldova 61 45 29 13 12 15 21 15 13 16 Romania 835 811 689 727 832 783 734 685 727 863 Serbia 375 351 346 340 329 317 305 293 293 400 Slovakia 202	Malta	27	27	25	26	29	29	33	17	18	18
Netherlands 109 98 91 72 73 65 63 66 62 64 Norway 31 30 29 27 25 23 23 25 24 21 Poland 2185 1902 1724 1507 1564 1455 1375 1286 1222 1195 Portugal 292 341 341 306 294 294 200 203 215 190 Republic of Moldova 61 45 29 13 12 15 21 15 13 16 Romania 835 811 689 727 832 783 734 685 727 863 Russian Federation 2766 2599 2431 2263 2162 2061 1960 1858 1858 1723 Stovakia 202 179 171 127 131 103 106 99 88 87	Montenegro	58	57	56	55	53	52	50	48	48	48
Norway 31 30 29 27 25 23 23 25 24 21 Poland 2185 1902 1724 1507 1564 1455 1375 1286 1222 1195 Portugal 292 341 341 306 294 200 203 215 190 Republic of Moldova 61 45 29 13 12 15 21 15 13 16 Romania 835 811 689 727 832 783 734 685 727 863 Russian Federation 2766 2599 2431 2263 2162 2061 1960 1858 1858 1723 Serbia 357 351 346 340 329 317 305 293 293 400 Slovenia 120 179 171 127 131 103 106 97 89 88	Netherlands	109	98	91	72	73	65	63	66	62	64
Poland2185190217241507156414551375128612221195Portugal292341341306294294200203215190Republic of Moldova614529113121521151316Romania835811689727832783734685727863Russian Federation2766259924312263216220611960185818581723Serbia357351346340329317305293293400Slovakia202179171127131103106978988Slovenia120125107996871164555421129Switzerland706754525151524774039Switzerland242220191818117177188TFYR of Macedonia9291919089888887108Turkey168718321977212220319571875179217921682Ukraine2045189617481599146113241232114512941446United Kingdom16351591120211731111994973833706	Norway	31	30	29	27	25	23	23	25	24	21
Portugal 292 341 341 306 294 294 200 203 215 190 Republic of Moldova 61 45 29 13 12 15 21 15 13 16 Romania 835 811 689 727 832 783 734 685 727 863 Russian Federation 2766 2599 2431 2263 2162 2061 1960 1858 1858 1723 Serbia 357 351 346 340 329 317 305 293 293 400 Slovatia 202 179 171 127 131 103 106 97 89 88 Slovatia 120 125 107 99 68 71 64 55 42 181 Spain 1748 1597 1607 1489 1446 1550 1352 1172 1215 1129 <td>Poland</td> <td>2185</td> <td>1902</td> <td>1724</td> <td>1507</td> <td>1564</td> <td>1455</td> <td>1375</td> <td>1286</td> <td>1222</td> <td>1195</td>	Poland	2185	1902	1724	1507	1564	1455	1375	1286	1222	1195
Republic of Moldova 61 445 29 13 12 15 21 15 13 16 Romania 835 811 689 727 832 783 734 685 727 863 Russian Federation 2766 2599 2431 2263 2162 2061 1960 1858 1858 1723 Serbia 357 351 346 340 329 317 305 293 293 400 Slovakia 202 177 11 127 131 103 106 97 89 88 Slovenia 120 125 107 99 68 71 64 55 42 182 Spain 1748 1597 1607 1489 1446 1550 1352 1172 1215 1129 Sweden 70 67 54 52 51 51 52 47 40 39	Portugal	292	341	341	306	294	294	200	203	215	190
Romania835811689727832783734685727863Russian Federation2766259924312263216220611960185818581723Serbia357351346340329317305293293400Slovakia202179171127131103106978988Slovenia120125107996871645542185Spain1748159716071489144615501352117212151129Sweden70675452515152474039Switzerland24222019181818717018TFYR of Macedonia929191908988888710887Turkey1687183219772122203919571875179217921682Ukraine2045189617481599146113241232114512941446United Kingdom16351591120211731111994973833706676North Africa413413413413413413413413413413413413Baltic Sea504555658596162<	Republic of Moldova	61	45	29	13	12	15	21	15	13	16
Russian Federation2766259924312263216220611960185818581723Serbia357351346340329317305293293400Slovakia202179171127131103106978988Slovenia12012510799687164554218Spain1748159716071489144615501352117212151129Sweden70675452515152474039Switzerland242220191818181171718TFYR of Macedonia9291919089888887100887Ukraine2045189617481599146113241232114512941446United Kingdom16351591120211731111994973833706676North Africa413413413413413413413413413413413413Baltic Sea502002002011277233239245225Black Sea54555658596162646566Mediterranean Sea1026105310801108113711661	Romania	835	811	689	727	832	783	734	685	727	863
Serbia357351346340329317305293293400Slovakia202179171127131103106978988Slovenia12012510799687164554218Spain1748159716071489144615501352117212151129Sweden70675452515152474039Switzerland242220191818181717718TFYR of Macedonia929191908988888710887Turkey1687183219772122203919571875179217921682Ukraine2045189617481599146113241232114512941446United Kingdom16351591120211731111994973833706676North Africa413413413413413413413413413413413Baltic Sea200205211216221227233239245225Black Sea54555658596162646566Mediterranean Sea10261053108011081137116611961	Russian Federation	2766	2599	2431	2263	2162	2061	1960	1858	1858	1723
Slovakia20217917112713110310697889888Slovenia12012510799687164554218Spain1748159716071489144615501352117212151129Sweden706754525151524740039Switzerland24222019181818171718TFYR of Macedonia929191908988888710887Turkey1687183219772122203919571875179217921682Ukraine2045189617481599146113241232114512941446United Kingdom16351591120211731111994973833706676North Africa4134165555658<	Serbia	357	351	346	340	329	317	305	293	293	400
Slovenia12012510799687164554218Spain1748159716071489144615501352117212151129Sweden70675452515152474039Switzerland24222019181818171718TFYR of Macedonia929191908988888710887Turkey1687183219772122203919571875179217921682Ukraine2045189617481599146113241232114512941446United Kingdom16351591120211731111994973833706676North Africa413413413413413413413413413413413Baltic Sea200205211216221227233239245225Black Sea54555658596162646566Mediterranean Sea1026105310801108113711661196122712591277North Sea430441452464475487500513556566Natural marine emissions7437437437437437	Slovakia	202	179	171	127	131	103	106	97	89	88
Spain1748159716071489144615501352117212151129Sweden70675452515152474039Switzerland24222019181818171718TFYR of Macedonia929191908988888710887Turkey1687183219772122203919571875179217921682Ukraine2045189617481599146113241232114512941446United Kingdom16351591120211731111994973833706676North Africa413413413413413413413413413413413Baltic Sea200205211216221227233239245225Black Sea54555658596162646566Mediterranean Sea1026105310801108113711661196122712591277North Sea430441452464475487500513556566Natural marine emissions743743743743743743743743743743743743743743743743743	Slovenia	120	125	107	99	68	71	64	55	42	18
Sweden 70 67 54 52 51 51 52 47 400 39 Switzerland 24 22 20 19 18 18 18 17 17 18 TFYR of Macedonia 92 91 91 90 89 88 88 87 108 87 Turkey 1687 1832 1977 2122 2039 1957 1875 1792 1792 1682 Ukraine 2045 1896 1748 1599 1461 1324 1232 1145 1294 1446 United Kingdom 1635 1591 1202 1173 1111 994 973 833 706 676 North Africa 413 413 413 413 413 413 413 413 413 413 413 413 413 413 413 413 413 416 676 676 685 59	Spain	1748	1597	1607	1489	1446	1550	1352	1172	1215	1129
Switzeriand 24 22 20 19 18 18 18 17 17 18 TFYR of Macedonia 92 91 91 90 89 88 88 87 108 87 Turkey 1687 1832 1977 2122 2039 1957 1875 1792 1792 1682 Ukraine 2045 1896 1748 1599 1461 1324 1232 1145 1294 1446 United Kingdom 1635 1591 1202 1173 1111 994 973 833 706 676 North Africa 413 416 416 676 676 676 676<	Sweden	70	67	54	52	51	51	52	47	40	39
IFYR of Macedonia929191908988888710887Turkey1687183219772122203919571875179217921682Ukraine2045189617481599146113241232114512941446United Kingdom16351591120211731111994973833706676North Africa413413413413413413413413413413413Remaining Asian areas (ASI)854854854854854854854854854854Baltic Sea200205211216221227233239245225Black Sea54555658596162646566Mediterranean Sea1026105310801108113711661196122712591277North Sea430441452464475487500513556566Natural marine emissions743 </td <td>Switzerland</td> <td>24</td> <td>22</td> <td>20</td> <td>19</td> <td>18</td> <td>18</td> <td>18</td> <td>17</td> <td>17</td> <td>18</td>	Switzerland	24	22	20	19	18	18	18	17	17	18
10rkey1087185219772122203919571875179217921682Ukraine2045189617481599146113241232114512941446United Kingdom16351591120211731111994973833706676North Africa413413413413413413413413413413413413413Remaining Asian areas (ASI)854854854854854854854854854854854854854Baltic Sea200205211216221227233239245225Black Sea54555658596162646566Mediterranean Sea1026105310801108113711661196122712591277North Sea430441452464475487500513526484Remaining N-E Atlantic Ocean457468480492504517530543557566Natural marine emissions743<	IFYR of Macedonia	92	91	91	90	89	88	88	87	108	87
Okrame 2045 1896 1748 1599 1461 1524 1232 1145 1294 1446 United Kingdom 1635 1591 1202 1173 1111 994 973 833 706 676 North Africa 413 414 416 676 Remaining Asian areas (ASI) 854 854 854 854 854 854 854 854 854 854 853 225 3165 166 161 162 64	Turkey	1687	1832	19/7	2122	2039	1957	18/5	1/92	1/92	1682
Onticed Kingdom 1635 1591 1202 111/5 1111 994 9/3 835 706 67/6 North Africa 413 416 416 854 854 854 854 854 854 853 205 225 233 239 245 225 211 216 221 227 233 239 245 225 24	Ukraine	2045	1896	1/48	1599	1461	1524	1232	1145	1294	1446
Norm Annea 415 416 415	United Kingdom	1635	1591	1202	412	412	994	9/3	833	/06	676
Kemaning Asian areas (ASI) 854 853 Baltic Sea 200 205 211 216 221 227 233 239 245 225 Black Sea 54 55 56 58 59 61 62 64 65 66 Mediterranean Sea 1026 1053 1080 1108 1137 1166 1196 1227 1259 1277 North Sea 430 441 452 464 475 487 500 513 526 484 Remaining N-E Atlantic Ocean 457 468 480 492 504 517 530 543 557 566 Natural marine emissions 743 743	North Airica	413	413	413	413	413	413	413	415	413	410
Datatic Sea 200 203 211 216 221 227 233 239 243 2225 Black Sea 54 55 56 58 59 61 62 64 65 66 Mediterranean Sea 1026 1053 1080 1108 1137 1166 1196 1227 1259 1277 North Sea 430 441 452 464 475 487 500 513 526 484 Remaining N-E Atlantic Ocean 457 468 480 492 504 517 530 543 557 566 Natural marine emissions 743 <td< td=""><td>Remaining Asian areas (ASI)</td><td>854</td><td>854</td><td>854</td><td>854</td><td>854</td><td>854</td><td>854</td><td>854</td><td>854</td><td>803</td></td<>	Remaining Asian areas (ASI)	854	854	854	854	854	854	854	854	854	803
Diack Sea 54 53 50 58 59 61 62 64 65 66 Mediterranean Sea 1026 1053 1080 1108 1137 1166 1196 1227 1259 1277 North Sea 430 441 452 464 475 487 500 513 526 484 Remaining N-E Atlantic Ocean 457 468 480 492 504 517 530 543 557 566 Natural marine emissions 743 <td>Dallic Sea</td> <td>200</td> <td>205</td> <td>211</td> <td>216</td> <td>221</td> <td>227</td> <td>233</td> <td>239</td> <td>245</td> <td>225</td>	Dallic Sea	200	205	211	216	221	227	233	239	245	225
International Sea 1020 1053 1080 1108 1137 1166 1196 1227 1259 1277 North Sea 430 441 452 464 475 487 500 513 526 484 Remaining N-E Atlantic Ocean 457 468 480 492 504 517 530 543 557 566 Natural marine emissions 743	Diack Sea	1026	33	20	38	39	01	62	1227	1250	1077
INVERTISEA 430 441 432 404 475 467 500 515 526 488 Remaining N-E Atlantic Ocean 457 468 480 492 504 517 530 543 557 566 Natural marine emissions 743	North See	1026	1053	1080	1108	1137	1100	500	512	1239	12//
Kinaming N-12 Auantic Ocean 437 408 460 492 504 517 530 545 557 586 Natural marine emissions 743 <td>Pomoining N E Atlantia Occorr</td> <td>450</td> <td>441</td> <td>452</td> <td>404</td> <td>4/3</td> <td>48/</td> <td>520</td> <td>513</td> <td>520</td> <td>484</td>	Pomoining N E Atlantia Occorr	450	441	452	404	4/3	48/	520	513	520	484
INALITY IAS IAS <thias< th=""> IAS <thias< th=""> <thias< t<="" td=""><td>Notural marine and a second</td><td>457</td><td>468</td><td>480</td><td>492</td><td>304</td><td>517</td><td>530</td><td>343</td><td>357</td><td>300</td></thias<></thias<></thias<>	Notural marine and a second	457	468	480	492	304	517	530	343	357	300
volcanic chrissions 2000 </td <td>Volgenio omissione</td> <td>2000</td>	Volgenio omissione	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
		2000	2000	2000	2000	2000	2000	2000	2000	2000	2000

Table A:1: National total emission trends of sulphur, as used for SR trend modelling at the MSC-W (Gg of SO_2 per year).

Area/Year	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Albania	18	19	20	22	22	23	24	25	25	26
Armenia	23	26	28	31	32	33	38	38	38	41
Austria	200	212	199	204	213	220	230	227	225	225
Azerbaijan	80	78	76	76	77	80	86	85	85	89
Belarus	223	218	213	208	204	205	209	213	184	174
Belgium	355	347	338	330	316	300	298	298	293	278
Bosnia and Herzegovina	52	52	52	53	53	52	52	52	52	52
Bulgaria	225	223	202	184	192	197	202	216	233	246
Croatia	73	76	77	77	70	69	69	70	69	79
Cyprus	22	23	23	25	19	23	22	19	17	18
Czech Republic	423	413	391	398	332	316	324	328	278	282
Denmark	244	221	205	188	184	181	189	171	186	185
Estonia	40	39	35	37	38	40	39	37	32	30
Finland	259	251	247	235	220	208	218	205	177	193
France	1551	1532	1461	1390	1335	1282	1243	1218	1207	1351
Georgia	20	23	27	30	30	31	32	32	32	28
Germany	1976	1940	1916	1855	1763	1674	1605	1554	1443	1394
Greece	332	348	337	328	343	318	343	317	317	315
Hungary	200	204	205	194	192	196	192	190	203	208
Iceland	9	9	9	9	9	9	11	11	11	12
Ireland	122	126	123	129	132	122	117	116	116	119
Italy	1653	1552	1456	1377	1366	1275	1259	1244	1173	1142
Kazakhstan (KZ)	145	136	127	119	127	135	151	151	151	164
Latvia	41	39	37	34	38	37	38	39	41	44
Lithuania	63	65	57	49	47	51	53	55	58	61
Luxembourg	33	33	33	33	32	31	30	29	29	28
Malta	12	12	12	12	12	11	12	12	12	12
Montenegro	21	20	18	19	20	20	20	21	21	21
Netherlands	428	402	397	389	381	368	367	360	344	311
Norway	233	235	238	224	220	212	215	215	197	191
Poland	1114	991	953	838	848	796	808	804	811	890
Portugal	267	278	287	285	286	294	271	271	275	267
Republic of Moldova	58	48	37	27	23	25	30	38	31	25
Romania	372	358	345	331	335	338	342	346	346	326
Russian Federation	2423	2542	2577	2457	2582	2698	3105	3093	3093	3350
Serbia	127	126	113	118	121	121	125	128	128	51
Slovakia	125	130	118	109	109	101	98	98	97	87
Slovenia	71	64	58	60	59	58	56	58	58	47
Spain	1365	1376	1447	1477	1459	1522	1519	1519	1405	1361
Sweden	250	242	230	217	211	206	203	197	205	175
Switzerland	112	109	105	101	97	92	88	87	86	82
TFYR of Macedonia	37	37	38	39	41	42	43	42	30	30
Turkey	850	881	912	942	940	937	934	932	932	928
Ukraine	1091	1015	938	861	886	911	936	960	960	488
United Kingdom	2121	2052	1936	1857	1799	1693	1685	1621	1627	1595
North Africa	96	96	96	96	96	96	96	96	96	96
Remaining Asian areas (ASI)	169	169	169	169	169	169	169	169	169	169
Baltic Sea	281	288	296	303	311	318	327	335	343	347
Black Sea	74	76	78	80	82	84	86	88	90	91
Mediterranean Sea	1476	1514	1553	1593	1634	1677	1720	1765	1810	1831
North Sea	605	620	636	652	668	685	703	721	739	747
Remaining N-E Atlantic Ocean	672	689	706	724	742	760	779	799	819	828
Natural marine emissions	0	0	0	0	0	0	0	0	0	0
Volcanic emissions	0	0	0	0	0	0	0	0	0	0
TOTAL	22828	22574	22188	21593	21515	21343	21809	21713	21400	21127

Table A:2: National total emission trends of nitrogen oxides, as used for SR trend modelling at the MSC-W (Gg of NO_2 per year).

Area/Year	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Albania	20	21	21	22	22	23	23	23	23	24
Armenia	15	15	14	13	13	12	15	17	17	19
Austria	69	69	67	66	65	64	65	64	64	66
Azerbaijan	41	41	38	37	36	35	41	48	48	50
Belarus	152	150	143	142	134	128	120	121	135	134
Belgium	96	93	90	87	84	82	79	74	74	73
Bosnia and Herzegovina	17	17	17	17	17	17	17	17	17	17
Bulgaria	77	66	60	56	56	56	52	54	57	55
Croatia	53	54	55	53	52	53	53	53	44	42
Cyprus	6	6	6	6	7	5	6	6	5	5
Czech Republic	83	82	77	76	81	74	82	69	68	63
Denmark	110	111	106	105	104	102	98	98	93	90
Estonia	11	11	10	9	9	9	10	10	9	9
Finland	38	35	33	33	33	33	33	33	36	36
France	789	788	780	789	775	778	750	742	735	740
Georgia	22	22	20	20	19	19	22	26	26	25
Germany	636	644	650	646	659	649	648	641	619	621
Greece	70	73	73	73	73	72	72	72	72	73
Hungary	76	74	72	71	67	65	67	74	80	81
Iceland	4	4	4	4	4	4	4	4	4	4
Ireland	125	128	128	123	123	119	116	113	113	110
Italy	426	428	436	424	433	435	423	412	426	419
Kazakhstan (KZ)	457	462	466	470	487	503	520	537	537	559
Latvia	14	13	12	12	14	13	14	13	14	15
Lithuania	38	40	41	43	45	46	47	49	39	35
Luxembourg	7	7	7	7	7	7	7	7	7	7
Malta	1	1	1	1	1	1	1	1	1	1
Montenegro	9	9	9	9	9	9	9	9	9	9
Netherlands	180	173	167	152	143	136	130	134	135	133
Norway	23	23	23	23	23	23	23	23	23	23
Poland	349	369	340	321	328	325	323	317	326	287
Portugal	66	65	65	64	66	64	64	64	73	70
Republic of Moldova	38	35	31	28	30	30	27	26	27	27
Romania	213	223	237	252	253	257	261	266	266	199
Russian Federation	743	688	670	663	638	613	613	621	621	602
Serbia	55	55	55	55	56	56	56	57	57	57
Slovakia	39	34	32	32	33	33	31	28	29	27
Slovenia	20	20	20	20	20	20	19	17	19	19
Spain	339	358	370	388	384	385	399	413	398	421
Sweden	62	61	59	58	57	57	56	56	52	52
Switzerland	62	61	61	60	57	55	52	58	55	59
TFYR of Macedonia	14	14	14	14	14	14	14	14	14	7
Turkey	394	397	400	403	404	405	406	407	407	408
Ukraine	472	476	481	485	500	517	533	550	550	227
United Kingdom	364	361	358	337	330	319	308	336	318	315
North Africa	235	235	235	235	235	235	235	235	235	235
Remaining Asian areas (ASI)	278	278	278	278	278	278	278	278	278	277
Baltic Sea	0	0	0	0	0	0	0	0	0	0
Black Sea	0	0	0	0	0	0	0	0	0	0
Mediterranean Sea	0	0	0	0	0	0	0	0	0	0
North Sea	0	0	0	0	0	0	0	0	0	0
Remaining N-E Atlantic Ocean	0	0	0	0	0	0	0	0	0	0
Natural marine emissions	0	0	0	0	0	0	0	0	0	0
Volcanic emissions	0	0	0	0	0	0	0	0	0	0
TOTAL	7406	7387	7330	7284	7277	7236	7223	7288	7257	6824

Table A:3: National total emission trends of ammonia, as used for SR trend modelling at the MSC-W (Gg of NH_3 per year).

Area/Year	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Albania	30	30	30	29	30	31	31	32	32	32
Armenia	41	43	45	47	47	48	49	49	49	49
Austria	203	190	179	179	182	176	175	172	154	172
Azerbaijan	215	221	227	233	233	233	234	234	234	234
Belarus	363	355	348	340	320	301	314	326	326	180
Belgium	233	223	212	201	194	181	173	165	155	150
Bosnia and Herzegovina	37	38	39	40	40	41	41	42	42	42
Bulgaria	138	144	140	123	128	123	121	132	147	159
Croatia	80	79	77	80	83	91	104	122	92	112
Cyprus	16	16	16	16	16	16	16	12	9	11
Czech Republic	286	276	264	266	257	238	238	240	218	179
Denmark	144	135	130	127	122	118	116	116	118	110
Estonia	51	43	42	38	34	39	41	41	36	34
Finland	175	171	167	154	157	151	145	142	131	133
France	1870	1812	1733	1658	1587	1476	1411	1367	1439	1336
Georgia	76	87	99	110	110	109	108	107	107	120
Germany	1913	1842	1714	1569	1476	1381	1272	1268	1253	1349
Greece	304	308	303	295	289	261	278	262	262	291
Hungary	187	181	184	187	179	176	171	172	177	177
Iceland	11	10	10	9	10	10	11	11	11	12
Ireland	116	118	98	90	87	81	78	63	62	60
Italy	1904	1798	1711	1538	1453	1344	1307	1273	1261	1166
Kazakhstan (KZ)	129	133	136	140	143	145	147	150	150	153
Latvia	64	64	64	58	58	59	60	64	63	65
Lithuania	85	87	82	78	71	72	75	67	84	78
Luxembourg	18	17	15	13	12	11	11	10	10	9
Malta	8	8	8	8	8	8	8	7	5	6
Montenegro	18	19	19	20	20	20	20	21	21	21
Netherlands	326	301	293	267	242	236	222	216	176	164
Norway	367	360	368	379	389	343	297	265	222	196
Poland	775	730	731	606	607	600	606	600	885	916
Portugal	293	293	285	282	284	286	287	287	302	312
Republic of Moldova	67	59	51	42	44	45	36	33	38	37
Romania	366	370	374	378	385	391	398	404	404	353
Russian Federation	2379	2371	2446	2445	2510	2574	2791	2675	2675	2799
Serbia	113	116	118	121	122	124	125	126	126	126
Slovakia	99	97	90	86	88	84	88	91	84	78
Slovenia	58	53	51	51	49	48	46	46	43	41
Spain	1126	1184	1181	1162	1147	1139	1146	1153	1055	926
Sweden	330	303	293	282	270	264	265	255	199	195
Switzerland	158	149	139	130	126	121	117	98	101	101
TFYR of Macedonia	27	26	26	25	26	27	27	28	28	45
Turkey	539	547	555	563	561	559	556	554	554	552
Ukraine	705	684	663	641	662	683	704	725	725	295
United Kingdom	1766	1617	1463	1348	1252	1175	1073	1024	977	910
North Africa	96	96	96	96	96	96	96	96	96	96
Remaining Asian areas (ASI)	204	204	204	204	204	204	204	204	204	204
Baltic Sea	10	10	10	10	11	11	11	12	12	12
Black Sea	3	3	3	3	3	3	3	3	3	3
Mediterranean Sea	50	51	52	54	55	56	58	59	61	62
North Sea	21	22	22	23	23	24	25	25	26	26
Remaining N-E Atlantic Ocean	22	23	24	24	25	25	26	27	27	28
Natural marine emissions	0	0	0	0	0	0	0	0	0	0
Volcanic emissions	0	0	0	0	0	0	0	0	0	0
TOTAL	18615	18116	17629	16868	16527	16059	15964	15673	15674	14919

Table A:4: National total emission trends of non-methane volatile organic compounds, as used for SR trend modelling at the MSC-W (Gg of NMVOC per year).

Area/Year	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Albania	133	130	127	124	122	119	117	114	114	111
Armenia	115	131	147	164	166	170	180	186	186	191
Austria	954	915	863	798	782	738	762	742	720	785
Azerbaijan	228	216	204	191	188	188	191	193	193	193
Belarus	736	733	729	725	719	727	741	758	765	592
Belgium	1097	1089	1080	1072	1009	969	956	972	876	838
Bosnia and Herzegovina	84	88	92	96	100	103	107	111	111	116
Bulgaria	651	706	689	667	659	700	696	755	740	785
Croatia	427	404	393	395	327	309	293	279	311	374
Cyprus	74	77	80	83	86	84	85	85	41	34
Czech Republic	872	773	727	650	602	544	578	572	511	484
Denmark	654	619	582	576	593	577	595	578	611	591
Estonia	237	200	191	177	178	178	183	175	158	148
Finland	477	455	550	530	604	599	564	554	525	511
France	7804	7664	7190	6628	6311	6010	5815	5977	5646	5179
Georgia	348	455	563	670	668	669	671	672	672	225
Germany	6033	5643	5286	4991	4696	4434	4311	4095	4035	4006
Greece	1342	1339	1312	1295	1266	1166	1199	1265	1265	954
Hungary	733	737	720	633	592	584	541	525	576	569
Iceland	44	45	45	46	46	46	46	46	46	46
Ireland	322	327	295	280	270	251	235	236	222	175
Italy	6571	6156	5890	5188	5108	4506	4403	4310	4193	3871
Kazakhstan (KZ)	307	300	293	287	291	298	313	321	321	333
Latvia	332	322	309	296	314	306	311	342	322	330
Lithuania	358	357	317	278	226	224	222	184	190	200
Luxembourg	54	53	50	49	49	48	48	48	48	48
Malta	23	22	21	20	17	15	12	10	10	7
Montenegro	50	51	53	54	55	56	57	58	58	58
Netherlands	832	809	780	751	669	668	648	623	599	519
Norway	671	631	595	564	552	546	510	483	446	421
Poland	4473	4027	3981	3414	3598	3412	3318	3426	3333	2800
Portugal	799	787	763	749	700	689	675	668	652	682
Republic of Moldova	188	156	123	90	95	91	91	77	90	137
Romania	1073	1155	1237	1319	1282	1246	1209	1172	1172	1417
Russian Federation	10909	10943	11340	11315	11856	12398	13286	13837	13837	14699
Serbia	305	315	325	335	341	346	352	358	358	358
Slovakia	379	348	335	320	322	299	315	316	303	290
Slovenia	125	110	102	101	95	90	83	84	84	108
Spain	3029	3004	2752	2597	2544	2427	2323	2231	2246	2365
Sweden	903	836	787	730	691	659	627	588	602	578
Switzerland	441	428	415	401	378	361	331	336	335	319
TFYR of Macedonia	86	85	84	84	83	83	80	77	117	96
Turkey	4337	4317	4209	3920	3663	3674	3685	3693	3693	3618
Ukraine	2366	2336	2306	2276	2318	2360	2295	2691	2424	2553
United Kingdom	5728	5332	5013	4285	4088	3617	3103	2923	2408	2268
North Africa	336	336	336	336	336	336	336	336	336	337
Remaining Asian areas (ASI)	449	449	449	449	449	449	449	449	449	449
Baltic Sea	29	30	30	31	32	33	33	34	35	36
Black Sea	8	8	8	8	8	9	9	9	9	10
Mediterranean Sea	148	152	156	160	164	168	173	177	182	187
North Sea	62	63	65	67	68	70	72	74	75	77
Remaining N-E Atlantic Ocean	65	67	69	70	72	74	76	78	80	82
Natural marine emissions	0	0	0	0	0	0	0	0	0	0
Volcanic emissions	0	0	0	0	0	0	0	0	0	0
TOTAL	68803	66728	65057	61335	60446	58724	58310	58902	57333	56158
		00/20					20010		2.000	2

Table A:5: National total emission trends of carbon monoxide, as used for modelling at the MSC-W (Gg of CO per year).

Area/Year	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Albania	6	6	6	7	7	7	7	7	7	7
Armenia	0	0	0	0	0	0	0	0	0	0
Austria	26	26	26	26	27	26	27	27	26	23
Azerbaijan	5	4	4	6	6	5	5	5	5	4
Belarus	62	56	49	40	41	41	41	41	41	28
Belgium	33	32	32	35	32	32	30	30	29	28
Bosnia and Herzegovina	17	18	18	20	20	20	20	19	19	19
Bulgaria	76	68	54	59	58	57	56	56	56	55
Croatia	20	20	20	20	19	18	17	17	17	17
Cyprus	1	1	1	1	1	1	1	1	1	1
Czech Republic	39	33	30	28	31	35	39	36	21	22
Denmark	34	31	29	23	23	22	23	23	28	28
Estonia	24	21	20	38	31	25	21	22	20	15
Finland	35	32	31	38	38	39	38	39	34	35
France	354	353	337	342	337	318	325	325	329	316
Georgia	1	1	2	3	3	3	3	2	2	2
Germany	124	115	107	115	113	109	108	105	111	112
Greece	55	57	57	49	50	52	53	54	54	55
Hungary	38	36	36	26	24	24	27	27	39	29
Iceland	0	0	0	1	1	1	1	1	1	1
Ireland	11	11	11	13	12	11	13	12	11	9
Italy	175	177	174	209	197	185	173	161	161	146
Kazakhstan (KZ)	21	19	18	31	30	29	28	27	27	26
Latvia	20	20	18	11	12	12	11	13	14	13
Lithuania	22	18	17	17	17	17	17	17	17	9
Luxembourg	2	2	2	3	3	3	3	3	3	2
Malta	2	2	2	1	1	1	0	0	0	0
Montenegro	7	6	6	6	6	6	6	6	6	6
Netherlands	57	47	39	29	28	26	25	24	23	20
Norway	56	54	56	58	57	60	56	55	50	48
Poland	158	140	142	135	142	138	136	134	138	136
Portugal	81	83	87	95	97	90	92	101	96	100
Republic of Moldova	57	46	34	23	23	24	25	25	25	7
Romania	97	97	95	115	112	109	106	103	103	99
Russian Federation	1053	1096	1104	694	711	728	745	762	762	784
Serbia	45	40	38	39	38	38	37	37	37	37
Slovakia	43	42	41	26	26	27	25	28	39	33
Slovenia	9	8	8	7	7	7	7	7	7	6
Spain	132	134	139	139	141	144	144	145	138	131
Sweden	40	40	37	46	46	46	47	47	33	36
Switzerland	10	10	10	9	9	9	9	8	9	9
TFYR of Macedonia	13	14	15	9	9	9	9	9	9	9
Turkey	240	248	256	305	295	286	277	268	268	255
Ukraine	290	275	259	289	287	284	281	278	278	274
United Kingdom	140	134	127	108	107	99	96	95	95	95
North Africa	60	60	60	60	60	60	60	60	60	60
Remaining Asian areas (ASI)	114	114	114	114	114	114	114	114	114	114
Baltic Sea	21	21	22	22	23	23	24	25	25	25
Black Sea	6	6	6	6	6	7	7	7	7	7
Mediterranean Sea	113	116	119	123	126	129	132	136	139	142
North Sea	46	47	48	50	51	52	54	55	56	55
Remaining N-E Atlantic Ocean	53	54	55	57	58	60	61	63	64	66
Natural marine emissions	0	0	0	0	0	0	0	0	0	0
Volcanic emissions	0	0	0	0	0	0	0	0	0	0
TOTAL	4145	4096	4018	3727	3713	3667	3661	3661	3653	3554

Table A:6: National total emission trends of fine particulate matter, as used for SR trend modelling at the MSC-W (Gg of $PM_{2.5}$ per year).

Table A:7:	National	total	emission	trends	of	particulate	matter,	as	used	for	SR	trend
modelling a	at the MS	C-W	(Gg of PN	Λ_{10} per	yea	ar).						

Area/Year	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Albania	8	8	8	9	9	9	9	9	9	9
Armenia	0	0	0	1	1	1	0	0	0	0
Austria	47	47	46	44	46	46	46	47	46	43
Azerbaijan	5		-10	7	-+0	40		5	5	-1.5
Belarus	88	70	60	56	56	57	57	57	57	40
Palaium	40	19	47	50	64	62	61	62	12	40
Pospia and Harzagovina	49	40	47	48	47	46	46	45	43	40
Bosina and Herzegovina	40	41	43	40	47	40	40	43	43	44
Bulgaria	126	113	89	94	94	93	92	92	92	91
Croatia	29	29	29	30	28	27	20	24	24	24
Cyprus	1	1	1	1	1	1	1	1	1	1
Czech Republic	60	52	47	44	47	50	56	52	34	35
Denmark	47	44	41	30	31	30	31	31	38	38
Estonia	33	29	27	51	42	35	30	30	26	20
Finland	60	56	54	54	54	55	55	58	51	55
France	559	555	530	549	541	519	531	532	508	488
Georgia	2	2	2	4	3	3	3	3	3	3
Germany	165	154	146	193	187	184	184	173	193	194
Greece	99	101	98	75	78	80	82	84	84	88
Hungary	69	66	66	60	57	56	61	60	64	48
Iceland	1	1	1	1	1	1	1	1	1	1
Ireland	16	17	17	20	19	18	18	18	15	11
Italy	233	237	230	273	258	243	229	214	214	194
Kazakhstan (KZ)	44	40	37	56	53	51	48	45	45	41
Latvia	24	24	22	14	15	14	14	16	16	15
Lithuania	26	21	21	21	21	21	21	20	20	11
Luxembourg	3	3	3	4	4	4	4	4	4	3
Malta	3	3	3	1	1	1	1	1	1	1
Montenegro	16	14	13	13	13	13	12	12	12	12
Netherlands	112	91	74	48	47	45	41	41	40	37
Norway	64	63	65	64	64	66	62	61	56	55
Poland	321	284	289	279	300	291	286	280	289	285
Portugal	107	109	114	119	127	117	118	128	124	128
Republic of Moldova	113	90	66	41	42	43	45	46	46	8
Romania	148	148	143	171	167	162	157	152	152	145
Russian Federation	1778	1845	1855	1161	1220	1268	1336	1366	1366	1439
Serbia	95	85	80	80	78	77	75	74	74	74
Slovakia	58	56	54	45	46	41	38	41	50	40
Slovenia	11	11	10	9	9	9	9	9	9	8
Spain	171	173	179	208	209	215	214	213	177	170
Sweden	69	66	62	68	68	68	70	69	53	48
Switzerland	22	22	21	20	19	19	19	18	19	19
TFYR of Macedonia	25	27	29	21	21	20	20	19	19	19
Turkey	334	348	361	436	421	405	390	374	374	354
Ukraine	484	456	427	473	469	466	462	458	458	453
United Kingdom	219	209	198	180	176	160	155	154	150	152
North Africa	148	148	148	148	148	148	148	148	148	149
Remaining Asian areas (ASI)	291	291	291	291	291	291	291	291	291	291
Baltic Sea	22	22	23	23	24	25	25	26	27	26
Black Sea			-5	7	7	7	7	7	7	
Mediterranean Sea	120	123	126	129	133	136	. 140	143	147	150
North Sea	49	50	51	52	54	55	57	58	59	58
Remaining N-E Atlantic Ocean	56	57	59	60	62	63	65	66	68	69
Natural marine emissions	0	0	0	00	02	05	0.5	00	00	02
Volcanic emissions	0	0	0	0	0	0	0	0	0	0
тоты	((75	(5(0	(42)	5050	5077	5022	5052	50.40	5057	5720
IUIAL	00/5	0008	0420	3738	39//	3923	3932	3940	2021	3/39

${\sf APPENDIX}\ B$

National emissions for 2007 in the extended EMEP domain

This appendix contains the national emission data for 2007 used throughout this report for main pollutants and primary particle emissions in the extended EMEP domain. These are the emissions that are used as basis for the 2007 source-receptor calculations. Results of these source-receptor calculations are presented in Appendix C.

The emissions for 2007 have been derived from the 2009 official data submissions to UN-ECE CLRTAP (Mareckova et al. 2009).

The units in this appendix are the same as in Appendix A.

References

Mareckova, K., Wankmüller, R., Wiesser, M., Poupa, S., Anderl, M., and Muik, B.: Inventory review 2009. Emission data reported under the LRTAP Convention and NEC Directive. Stage 1 and 2 review. Status of gridded data, EMEP/CEIP 1/2009, EEA/CEIP Vienna, 2009.

Table	B:1:	National	total	emissions	for	2007	in	the	extended	EMEP	domain.	(Unit:
Gg.)												

Area/Pollutant	SO_x	NO_x	NH ₃	NMVOC	CO	PM _{2.5}	PM_{co}	PM ₁₀
Albania	31	27	24	33	108	7	3	9
Armenia	6	43	19	50	198	0	0	0
Austria	26	220	66	180	769	23	20	43
Azerbaijan	113	92	53	234	194	4	1	4
Belarus	97	161	144	222	541	29	13	42
Belgium	126	260	70	145	750	23	11	34
Bosnia and Herzegovina	431	51	17	43	120	19	24	43
Bulgaria	859	187	58	82	250	54	36	90
Croatia	65	82	43	114	361	9	3	12
Cyprus	32	20	5	10	24	3	2	4
Czech Republic	217	284	60	174	509	21	13	35
Denmark	23	167	75	104	448	33	11	43
Estonia	88	34	10	36	170	20	8	28
Finland	83	183	35	129	501	34	14	48
France	435	1345	737	1199	4674	303	172	475
Georgia	13	28	23	197	244	2	0	2
Germany	493	1284	624	1278	3748	106	98	204
Greece	543	374	65	204	726	56	33	89
Hungary	84	190	71	148	507	21	14	36
Iceland	8	12	4	13	46	0	0	1
Ireland	54	117	106	57	171	10	4	14
Italy	339	1147	418	1194	3334	131	32	163
Kazakhstan (KZT)	3309	757	852	236	2048	458	790	1248
Kyrgyzstan	588	22	27	8	134	62	135	197
Latvia	3	43	15	58	300	13	1	15
Lithuania	39	69	36	74	208	10	2	12
Luxembourg	1	14	5	9	48	2	1	3
Malta	18	11	2	3	0	I	Í	1
Montenegro	48	21	9	21	58	6	6	12
Netherlands	60	300	133	165	535	20	17	37
Norway Delevel	20	192	23	198	397	43	127	205
Poland	1131	885	292	390	2003	128	137	205
Portugal Depublic of Moldovo	1/0	255	20	283	001	7	28	139
Republic of Moldova	754	221	109	37	137	55	1	0
Romania Russian Enderation (RUE)	2665	4250	011	2015	16202	964	49 015	1690
Serbia	428	4339	57	126	358	37	37	74
Slovakia	420	83	37	74	277	20	5	3/
Slovenia	14	45	19	30	99	5	2	7
Spain	1108	1357	422	921	2486	134	39	173
Sweden	33	165	50	178	565	32	13	44
Switzerland	14	78	60	95	295	8	11	19
Taijkistan	36	57	34	26	663	21	21	43
TFYR of Macedonia	100	35	7	26	98	9	9	18
Turkey	1612	926	409	550	3589	247	93	340
Turkmenistan	160	65	44	34	368	45	54	99
Ukraine	1363	732	213	408	3182	272	178	450
United Kingdom	591	1486	289	942	2114	82	53	135
Uzbekistan	775	227	82	80	1223	155	236	390
North Africa	413	96	235	96	336	60	88	149
Asian areas (AST)	1470	430	881	665	3935	189	231	421
Baltic Sea	205	350	0	12	37	24	1	26
Black Sea	66	92	0	3	10	7	0	8
Mediterranean Sea	1294	1852	0	64	192	145	8	153
North Sea	442	754	0	27	79	54	3	57
Remaining N-E Atlantic Ocean	575	837	0	29	84	67	4	71
Natural marine emissions	743	0	0	0	0	0	0	0
Volcanic emissions	2000	0	0	0	0	0	0	0
TOTAL	27503	23368	8148	15275	63339	4312	3591	7903

APPENDIX C

Source-receptor tables for 2007 (Extended domain)

The source-receptor tables in this appendix are calculated for the meteorological and chemical conditions of 2007.

The tables are calculated for the extended EMEP domain and are based on model runs driven by HIRLAM meteorology.

The source-receptor (SR) relationships give the change in air concentrations or depositions resulting from a change in emissions from each emitter country.

For each country, reductions in six different pollutants have been calculated separately: with an emission reduction of 15% for SO_x , NO_x , NH_3 , NMVOC, PPM_{fine} or PPM_{coarse} respectively.

The deposition tables show the contribution from one country to another. They have been calculated adding the differences obtained by a 15% reduction for all emissions in one country multiplied by a factor of 100/15, in order to arrive at total estimates.

For the concentrations and indicator tables, the differences obtained by the 15% emission reduction of the relevant pollutants are given directly. Thus, the tables should be interpreted as estimates of this reduction scenario from the chemical conditions in 2007.

The SR tables in the following aim to respond to two fundamental questions about transboundary air pollution:

- 1. Where do the pollutants emitted by a country or region end up?
- 2. Where do the pollutants in a given country or region come from?

Each column answers the first question. The numbers within a column give the change in the value of each pollutant (or indicator) for each receiver country caused by the emissions in the country given at the top of the column.

Each row answers the second question. The numbers given in each row show which emitter countries were responsible for the change in pollutants in the country given at the beginning of each row.

APPENDIX C. SR TABLES FOR 2007

The following SR tables are presented in this appendix, all in the extended EMEP domain, including new EECCA countries, and using 2007 HIRLAM meteorology:

Acidification and eutrophication

- Deposition of OXS (oxidised sulphur). The contribution from SO_x , NO_x , NH_3 and VOC emissions have been summed up and scaled to a 100% reduction.
- Deposition of OXN (oxidised nitrogen). The contribution from SO_x , NO_x , NH_3 and VOC emissions have been summed up and scaled to a 100% reduction.
- Deposition of RDN (reduced nitrogen). The contribution from SO_x , NO_x , NH_3 and VOC emissions have been summed up and scaled to a 100% reduction.

Ground Level Ozone

- AOT40^{3m}_f. Effect of a 15% reduction in NO_x emissions.
- AOT40 $_{f}^{3m}$. Effect of a 15% reduction in VOC emissions.
- SOMO35. Effect of a 15% reduction in NO_x emissions.
- SOMO35. Effect of a 15% reduction in VOC emissions.

Particulate Matter

- PM_{2.5}. Effect of a 15% reduction in PPM emissions.
- $PM_{2.5}$. Effect of a 15% reduction in SO_x emissions.
- $PM_{2.5}$. Effect of a 15% reduction in NO_x emissions.
- PM_{2.5}. Effect of a 15% reduction in NH₃ emissions.
- PM_{2.5}. Effect of a 15% reduction in VOC emissions.
- $PM_{2.5}$. Effect of a 15% reduction in all emissions. The contribution from a 15% reduction in PPM, SO_x , NO_x , NH_3 and VOC emissions have been summed up.

Table C.1: 2007 country-to-country blame matrices for **oxidised sulphur** deposition. Units: 100 Mg of S. **Emitters** \rightarrow , **Receptors** \downarrow . (Based on HIRLAM meteorology.)

	AL	AM	AT	ΑZ	ΒA	BE	BG	ΒY	СН	CY	CZ	DE	DK	EE	ES	FI	FR	GB	GE	GR	HR	ΗU	IE	IS	IT	KG	KZT	LT	LU	LV	MD	ME	
AL	39	0	0	0	11	0	17	0	0	0	1	1	0	0	4	0	1	0	0	44	0	1	0	0	11	0	0	0	0	0	0	6	AL
AM	0	6	0	15	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	2	0	0	0	0	0	AM
AT	0	0	32	0	14	4	6	0	4	0	31	58	0	0	17	0	17	5	0	1	0	5	0	0	25	0	0	0	0	0	0	1	AT
AZ	0	3	0	134	1	0	2	0	0	0	0	0	0	0	0	0	0	0	4	1	0	0	0	0	0	0	12	0	0	0	0	0	AZ
BA	2	0	2	0	450	1	14	0	0	0	6	6	0	0	10	0	4	1	0	10	0	8	0	0	19	-0	0	0	0	0	0	16	BA
BE	0	0	0	0	0	109	0	0	0	0	2	21	0	0	8	0	59	18	0	0	0	0	1	0	0	0	0	0	0	0	0	0	BE
BG	3	0	1	0	32	0	960	1	0	0	4	4	0	0	5	0	2	1	0	71	0	5	0	0	9	0	1	0	0	0	2	5	BG
BY	1	0	2	1	24	3	21	193	1	0	27	27	2	8	12	3	8	8	0	6	1	8	0	0	8	0	6	17	0	1	1	2	BY
СН	0	0	1	0	2	2	1	0	18	0	1	17	0	0	19	0	26	3	-0	0	0	0	0	0	15	0	0	0	0	0	0	0	СН
CY	0	0	0	0	-	0	0	0	0	ې ۲	0		0	0		_0		0	0	1	0	0	0	_0	-0	0	0	0	0	_0	ů N	0 0	CY
C7	0	0	6	0	10	6	3	1	1	0	218	77	0	0	11	-0	15	7	0	1	0	6	0	0	6	0	0	0	0	-0	0	1	C7
	0	0	8	0	10	121	5	1	11	0	107	1012	6	1	82	1	200	104	0	2	0	1	5	0	15	0	1	1	2	0	0	1	
	0	0	0	0	10	121	0	1	11	0	107	1012	14	1	02	1	209	21	0	2	0	4	1	0	15	0	1	1	2	0	0	1	
	0	0	0	0	1	4	1	0	0	0	4	19	14	20	4	0	1	21	0	1	1	0	1	0	1	0	1	0	0	1	0	0	
EE	0	0	1	0	1	1	1	3	1	0	3	0	1	29	1407	0	2	10	0	1	1	1	1	0	10	0	1	4	0	1	0	1	EE
ES	0	0	1	0	1	4	3	0	1	0	3	10	0	0	1427	0	38	10	0	3	0	1	1	0	12	0	0	0	0	0	0	1	ES
FI	0	0	0	0	3	- 3	3	5	0	0	(14	2	35	5	146	5	13	0	1	29	1	1	0	1	0	4	5	0	1	0	0	FI
FR	0	0	2	0	13	79	7	0	8	0	16	118	1	0	431	0	775	98	-0	2	0	2	7	0	38	0	0	0	1	0	0	1	FR
GB	0	0	0	0	1	12	1	0	0	0	3	18	1	0	25	0	29	582	-0	0	0	0	28	0	0	0	0	0	0	0	0	0	GB
GE	0	2	0	32	1	0	6	0	0	0	1	1	0	0	0	0	0	0	22	2	0	0	0	0	0	0	6	0	0	0	0	0	GE
GL	0	-0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	1	2	-0	0	1	0	0	0	0	0	0	0	0	0	0	0	GL
GR	9	0	0	0	21	0	277	0	0	0	2	2	0	0	8	0	2	1	0	447	0	2	0	0	13	0	1	0	0	0	0	4	GR
HR	1	0	3	0	111	1	9	0	0	0	9	7	0	0	10	0	6	1	0	6	0	11	0	0	25	0	0	0	0	0	0	4	HR
HU	1	0	9	0	88	2	18	1	1	0	26	20	0	0	13	0	9	2	0	8	0	117	0	0	20	0	0	0	0	0	0	5	HU
IE	0	-0	0	0	0	1	0	0	0	0	1	3	0	0	2	0	4	20	-0	0	0	0	67	0	0	0	0	0	0	0	0	0	IE
IS	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	2	0	0	0	0	0	9	0	0	0	0	0	0	0	0	IS
IT	3	0	5	0	90	2	22	0	4	0	11	16	0	0	71	0	44	4	0	26	0	6	0	0	437	0	0	0	0	0	0	7	IT
KG	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	811	383	0	0	0	0	0	KG
КZТ	1	5	1	46	19	1	50	6	0	1	7	8	0	4	7	2	4	3	4	19	2	3	0	0	5	603	6210	2	0	0	1	2	КZТ
LT	0	0	1	0	4	2	3	8	0	0	9	15	1	2	5	1	4	5	0	1	0	2	0	0	2	0	1	46	0	1	0	0	LT
LU	0	0	0	0	0	3	0	0	0	-0	0	3	0	0	1	0	6	1	-0	0	0	0	0	0	0	-0	0	0	0	0	0	0	LU
LV	0	0	0	0	3	2	3	8	0	0	6	12	1	6	3	3	4	5	0	1	1	1	0	0	1	0	1	20	0	5	0	0	LV
MD	0	0	0	0	8	0	21	1	0	0	2	2	0	0	1	0	1	1	0	5	0	2	0	0	1	0	1	0	0	0	17	1	MD
MF	4	0	0	0	16	0	6	0	0	0	1	1	0	0	3	0	1	0	0	6	0	1	0	0	6	0	0	0	0	0	0	31	MF
MK	6	0	0	0	8	0	53	0	0	0	1	1	0	0	2	0	1	0	0	73	0	1	0	0	4	0	0	0	0	0	0	2	MK
мт	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0 0	ů N	0	мт
MI	0	0	n 0	0	0	45	0	0	0	0	1	21	0	0	6	0	20	30	_0	0	0	0	1	0	0	0	0	0	0	0	n n	0	NI
	0	0	0	0	1	-5	1	1	0	0	3	12	2	3	7	1	25	62	-0	0	36	0	2	0	1	0	1	1	0	0	0	0	
DI	1	0	6	1	27	15	20	12	2	0	160	100	2	י ר	20	7 2	، 21	25	0	10	1	10	1	0	17	0	2	7	0	0	1	2	
	1	0	0	1	31	10	20	13	2	0	100	109	0	2	30 07	2	21	35	0	10	1	10	1	0	1/	0	0	0	0	0	1	0	
	5	-0	1	-0	126	0 2	201	2	1	0	24	20	0	1	16	0	2	1	-0	50	-0	26	0	-0	22	0	2	1	0	0	7	14	
	0	0	4	1	141	4	204	0	1	0	24	20	0	1	10	0	9	4	0	39	0	10	0	0	16	0	5	1	0	0	,	14	
	0	0	2	100	141	17	207	160	0	0	0	0	0	240	9	117	5 47	1	14	54 07	0	10	0	1	10	105	4614	45	0	0	11	20	
KUE CE	5	1	9	102	152	11	507	102	о 0	о О	102	122	0	249	10	117	47	40	14	01	55 72	33	3	1	34	105	4014	45	0	4	11	14	KUE CE
SE	0	0	1	0	4	8	4	5	0	0	12	31	14	11	12	21	13	48	0	2	13	1	2	0	2	0	2	5	0	0	0	0	SE
51	0	0	3	0	12	0	3	0	0	0	4	4	0	0	4	0	3	0	0	1	0	2	0	0	21	0	0	0	0	0	0	1	51
SK	0	0	4	0	26	2	(0	1	0	36	16	0	0	6	0	5	2	0	3	0	25	0	0	(0	0	0	0	0	0	2	SK
1 J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	0	52	59	0	0	-0	0	0	11
TM	0	1	0	11	1	0	2	0	0	0	0	0	-0	0	0	0	0	0	1	1	0	0	-0	-0	0	11	135	0	-0	-0	0	0	ТМ
TR	3	3	1	10	26	1	227	2	0	16	6	7	0	1	15	0	5	2	3	126	0	4	0	0	13	0	10	0	0	0	2	4	TR
UA	4	1	5	10	107	5	223	35	1	1	59	48	2	7	24	3	16	12	2	54	1	37	1	0	24	0	35	6	0	0	19	11	UA
UZ	0	1	0	6	1	0	2	0	0	0	0	0	-0	0	0	0	0	0	0	1	0	0	0	-0	0	84	337	0	-0	-0	0	0	UZ
ATL	0	0	2	1	12	48	11	6	2	0	32	106	4	24	1152	38	201	564	-0	4	125	3	111	30	8	1	59	4	0	0	0	1	ATL
BAS	0	0	2	0	11	18	9	8	1	0	35	112	28	38	21	53	30	52	0	4	8	4	2	0	5	0	4	17	0	2	0	1	BAS
BLS	3	1	2	11	49	1	356	6	0	2	13	12	0	2	9	1	5	4	7	83	0	10	0	0	11	0	16	1	0	0	9	6	BLS
MED	35	0	9	1	339	9	588	2	5	48	34	47	1	1	711	1	219	16	0	820	0	19	1	0	612	0	3	1	0	0	1	41	MED
NOS	0	0	1	0	7	66	4	2	1	0	18	125	15	3	71	2	153	1064	0	1	1	2	23	1	3	0	1	2	0	0	0	1	NOS
AST	0	5	0	163	7	0	21	1	0	13	3	2	0	1	4	0	1	1	4	16	0	1	0	-0	3	443	1152	0	0	0	0	1	AST
NOA	2	0	1	0	23	1	51	0	1	2	4	6	0	0	111	0	20	2	0	68	0	2	0	0	40	0	1	0	0	0	0	3	NOA
SUM	139	35	128	546	2034	611	3724	478	70	92	1073	2405	114	430	4551	408	2085	2887	63	2115	338	400	263	41	1514	2112	13066	191	6	16	74	220	SUM
EXC	97	29	112	371	1586	465	2683	452	60	26	934	1995	66	362	2471	313	1457	1183	52	1119	202	359	126	11	832	1667	11830	164	5	14	63	166	EXC
EU	24	0	85	3	506	430	1639	50	34	4	697	1727	51	90	2280	182	1324	1022	1	641	106	235	118	1	650	0	19	92	5	8	11	46	EU
emis	156	32	128	566	2153	632	4294	487	68	158	1085	2466	117	442	5541	415	2173	2953	63	2716	325	422	271	42	1694	2938	16544	193	7	17	78	239	emis
	AL	AM	AT	AZ	BA	BE	BG	ΒY	СН	CY	CZ	DE	DK	EE	ES	FI	FR	GB	GE	GR	HR	HU	IE	IS	IT	KG	KZT	LT	LU	LV	MD	ME	
Table C.1 Cont.: 2007 country-to-country blame matrices for **oxidised sulphur** deposition. Units: 100 Mg of S. **Emitters** \rightarrow , **Receptors** \downarrow . (Based on HIRLAM meteorology.)

	MK	ΜT	NL	NO	PL	ΡT	RO	RS	RUE	SE	SI	SK	ТJ	ТΜ	TR	UA	UZ	ATL	BAS	BLS	MED	NOS	AST	NOA	BIC	DMS	VOL	SUM	EXC	EU	
AL	26	0	0	0	2	0	6	34	0	0	0	0	-0	0	2	2	0	0	0	0	21	0	0	3	4	1	67	306	209	89	AL
AM	0	0	0	0	0	0	1	0	1	0	0	0	0	1	55	1	1	0	0	0	1	0	20	0	4	0	18	129	87	4	AM
AT	1	0	2	0	39	1	10	11	1	0	7	4	0	0	0	5	0	1	1	0	9	5	0	2	16	1	10	349	303	265	AT
Α7	0	0	0	0	1	0	2	1	13	0	0	0	0	5	67	5	3	0	0	0	1	0	50	1	9	0	31	345	254	8	Α7
RΔ	4	0 0	ů N	0	16	0	18	76	1	0 0	1	4	-0	0	1	5	0	0	0	0	18	1	0	3	8	1	50	757	676	120	RΔ
DE	-	0	11	0	10	0	10	0	0	0	1	-	-0	0	0	1	0	2	1	0	10	25	0	0	7	2	0	206	220	120	DE
DL	0	0	11	0	4	0	100	0	0	0	0	0	-0	0	22	1	0	5	1	0	10	35	0	0	10	2	155	200	230	230	DL
BG	25	0	0	0	10	0	180	80	9	0	0	3	0	0	33	48	0	0	0	8	19	1	2	5	12	2	155	1/21	1510	1270	BG
BY	2	0	1	1	315	1	49	24	51	2	1	9	0	0	10	142	1	1	13	1	6	8	2	1	26	3	67	1129	1000	538	BY
CH	0	0	1	0	2	1	1	1	0	0	0	0	-0	0	0	0	0	1	0	0	5	2	0	1	9	1	3	135	113	91	CH
CY	0	0	0	-0	0	0	0	0	0	-0	0	0	-0	0	19	0	0	0	0	0	3	0	2	0	1	0	2	34	26	5	CY
CZ	1	0	2	0	119	1	7	10	1	0	1	12	0	0	1	9	0	1	2	0	3	7	0	1	13	1	8	573	536	500	CZ
DE	1	0	58	1	159	5	10	10	5	1	1	5	0	0	1	13	0	13	58	0	11	150	0	2	70	14	12	2307	1977	1923	DE
DK	0	0	3	0	19	0	2	1	1	1	0	0	-0	0	0	3	0	2	41	0	1	38	0	0	9	6	2	210	111	103	DK
EE	0	0	1	0	26	0	3	2	12	1	0	1	0	0	2	9	0	1	21	0	1	4	0	0	5	2	7	165	125	93	EE
ES	1	0	1	0	7	71	3	4	1	0	0	1	0	0	0	1	0	60	0	0	84	6	0	17	72	16	32	1900	1613	1596	ES
FI	0	0	1	2	60	0	7	4	55	13	0	2	0	0	6	29	0	4	45	0	1	11	1	0	35	9	26	601	467	328	FI
FR	1	0	19	0	29	16	8	9	1	0	1	2	0	0	0	4	0	69	4	0	56	126	0	8	110	33	28	2128	1694	1654	FR
GB	0	0	8	0	12	1	2	1	1	0	0	1	-0	0	0	3	0	65	3	0	0	103	0	0	67	38	3	1012	733	725	GB
GE	1	0	0	0	4	0	7	2	12	0	0	0	0	2	123	16	2	0	0	3	2	0	24	1	8	1	48	332	246	24	GE
GL	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	110	2	2	124	8	6	GL
GR	57	1	0	0	10	0	38	30	-	0	0	1	0	ů N	25	10	0	0	0	2	73	0	1	8	13	5	148	1236	085	806	GR
	21	1	0	0	21	0	16	15	1	0	1	E E	0	0	2J 1	19	0	0	0	2	13	1	1	2	15	1	140	266	204	124	
	4	0	1	0	67	1	E.3	4J 00	1	0	4 E	22	-0	0	2	17	0	1	1	0	10	1	0	2	14	1	42	600	611	102	
	4	0	1	0	07	1	55	00	2	0	5	33	-0	0	2	17	0	1	1	0	12	2	0	2	14	12	45	160	104	405	
IE	0	0	1	0	2	0	0	0	0	0	0	0	-0	0	0	0	0	22	0	0	0	4	0	0	25	13	2	109	104	103	IE
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	30	11	1	00	14	5	15
11	8	3	1	0	28	3	22	39	2	0	6	4	-0	0	3	(0	3	1	0	182	3	0	22	38	11	491	1624	8/4	/11	11
KG	0	0	0	0	0	0	0	0	9	0	0	0	24	7	9	2	452	0	0	0	0	0	46	0	16	0	52	1815	1701	3	KG
κζι	5	0	1	0	50	0	56	17	989	1	0	3	17	110	260	294	672	1	3	4	9	3	257	3	177	2	645	10598	9493	230	ΚΖΙ
LT	0	0	1	0	102	0	7	4	12	1	0	2	0	0	2	15	0	1	14	0	1	6	0	0	9	2	13	310	264	215	LT
LU	0	0	1	0	0	0	0	0	0	0	0	0	-0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	19	16	16	LU
LV	0	0	1	0	57	0	6	3	11	2	0	2	-0	0	2	14	0	1	17	0	1	5	0	0	8	3	11	232	185	140	LV
MD	2	0	0	0	17	0	59	9	5	0	0	2	-0	0	7	48	0	0	0	2	2	0	0	1	4	0	23	246	213	115	MD
ME	3	0	0	0	2	0	4	19	0	0	0	0	0	0	1	1	0	0	0	0	9	0	0	1	2	0	25	146	108	33	ME
MK	59	0	0	0	3	0	10	32	1	0	0	1	-0	0	4	3	0	0	0	0	7	0	0	2	3	0	42	320	265	150	MK
MT	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	7	3	3	MT
NL	0	0	47	0	5	0	1	0	0	0	0	0	-0	0	0	1	0	3	2	0	0	93	0	0	8	4	1	311	200	198	NL
NO	0	0	2	26	18	0	3	1	11	5	0	0	0	0	2	4	0	16	11	0	1	49	0	0	65	27	14	405	221	138	NO
PL	4	0	8	1	1942	2	51	43	21	3	3	33	0	0	8	102	0	4	46	1	12	35	1	3	48	8	75	3083	2851	2611	PL
ΡT	0	0	0	-0	1	187	0	0	0	0	0	0	0	0	0	0	0	43	0	0	3	1	0	1	14	5	1	348	281	280	ΡT
RO	25	0	1	0	102	1	1190	191	20	0	2	20	0	0	45	153	0	1	2	9	26	3	4	7	30	3	201	2680	2395	1801	RO
RS	25	0	0	0	22	0	99	455	2	0	1	6	0	0	6	14	0	0	0	1	16	1	0	4	11	1	104	1126	987	310	RS
RUE	28	1	8	7	763	3	431	138	12975	19	4	38	3	66	667	2328	180	23	96	32	49	48	208	15	817	44	1707	27254	24217	2580	RUE
SE	0	0	5	11	75	1	11	5	24	59	0	2	-0	0	5	20	0	8	95	0	2	70	1	1	61	19	26	778	496	345	SE
SI	0	0	0	0	8	0	5	7	0	0	13	2	0	0	0	2	0	0	0	0	8	0	0	1	3	0	4	112	95	73	SI
SK	1	0	1	0	119	0	21	25	2	0	2	62	0	0	1	14	0	0	1	0	4	2	0	1	8	1	15	426	393	320	SK
τJ	0	0	0	0	0	0	0	0	2	0	0	0	37	6	4	0	155	0	0	0	0	0	23	0	15	0	21	374	315	1	τJ
тм	0	0	0	-0	2	0	2	1	17	-0	0	0	2	159	52	7	180	0	0	0	1	0	148	1	30	0	63	842	589	9	тм
TR	17	1	0	0	30	0	97	41	42	0	1	3	0	100	2557	125	100	1	1	27	110	1	190	28	72	11	361	4216	3404	556	TR
	18	0	2	1	517	1	420	117	241	1	1 2	38	0	1	132	2004	6	2	11	24	20	10	150	20	70	8	330	4855	4348	1510	
117	10	0	0	0	311	0	-120 0	117	241	0	0	0	16	т БЛ	132	2034	501	0	- 11	24	1	10	76	0	21	0	72	1252	1171	1310	117
	2	0	10	-0 27	116	0	10	10	210	10	1	5	10	J4 1	41	56	791	1765	20	0	14	150	10	5	5043	2422	101	10701	22/1	2503	
	2	0	10	21	277	90	19	10	510	20	1	5	0	1	7	40	2	1105	427	1	14	150	2	1	5042	2423	26	12/91	045	2002	
DAS	10	0	11	4	211	1	25	15	10	20	1	0	0	0	1	42	0	0	457	1 1 1 1 1	4	10	1	1	50	29	200	1000	945	192	DAS
BLS	18	0	1	0	88	0	327	70	154	0	1	8	0	2	495	501	2	1	3	108	41	3	30	8	42	31	320	2998	2352	939	BLS
MED	89	52	3	0	101	20	180	199	18	0	9	14	-0	0	790	92	0	14	3	13	3896	13	89	321	249	256	1160	11149	5133	3517	MED
NOS	1	0	70	17	90	3	11	6	10	5	0	3	0	0	3	17	0	70	44	0	4	1082	0	1	182	193	21	3401	1805	1737	NOS
AST	3	0	0	-0	14	0	20	8	156	0	0	1	25	122	819	76	409	0	1	2	37	1	2493	16	278	4	454	6786	3500	104	AST
NOA	8	6	0	0	9	6	20	17	2	0	1	1	-0	0	50	9	0	3	0	1	323	2	9	398	138	28	88	1459	469	352	NOA
SUM	446	71	293	99	5492	431	3527	1919	15291	165	70	341	124	542	6329	6451	2660	2219	1009	301	5156	2166	3696	908	8223	3279	7288	120727			SUM
EXC	324	12	190	51	4797	301	2925	1596	14582	110	58	304	99	416	4158	5597	2246	359	494	116	837	839	1071	157	2237	313	5088		69038	23381	EXC
EU	130	8	173	17	3009	292	1644	582	187	82	42	192	0	1	158	490	2	306	355	22	519	711	13	83	696	198	1314		19093	16723	EU
emis	500	91	302	99	5655	850	3772	2141	18326	167	71	353	182	800	8058	6817	3876	2873	1025	330	6469	2208	7352	2065	0	3715	10000	137515	101478	36987	emis
	MK	ΜT	NL	NO	PL	PT	RO	RS	RUE	SE	SI	SK	ТJ	ТΜ	TR	UA	UZ	ATL	BAS	BLS	MED	NOS	AST	NOA	BIC	DMS	VOL	SUM	EXC	EU	

Table C.2: 2007 country-to-country blame matrices for **oxidised nitrogen** deposition. Units: 100 Mg of N. **Emitters** \rightarrow , **Receptors** \downarrow . (Based on HIRLAM meteorology.)

Table C.2 Cont.: 2007 country-to-country blame matrices for **oxidised nitrogen** deposition. Units: 100 Mg of N. **Emitters** \rightarrow , **Receptors** \downarrow . (Based on HIRLAM meteorology.)

	MK	ΜT	NL	NO	PL	ΡT	RO	RS	RUE	SE	SI	SK	ТJ	ТΜ	TR	UA	UZ	ATL	BAS	BLS	MED	NOS	AST	NOA	BIC	DMS	VOL	SUM	EXC	EU	
AL	4	0	0	0	2	0	2	7	1	0	0	0	-0	0	1	1	-0	1	0	0	24	1	0	0	1	0	0	120	92	70	AL
AM	0	0	0	0	0	0	0	0	2	0	0	0	0	0	10	0	0	0	0	0	0	0	2	0	2	-0	0	36	32	2	AM
AT	0	0	8	1	17	1	3	2	2	1	8	2	0	0	0	2	0	2	2	0	9	9	0	0	6	-0	0	379	350	330	AT
AZ	0	0	0	0	1	0	1	0	20	0	0	0	0	1	13	2	1	0	0	0	1	0	7	0	5	-0	0	105	90	6	AZ
BA	1	0	2	0	12	0	5	14	2	0	2	3	0	0	0	2	0	1	1	0	22	3	0	0	1	-0	0	235	207	162	BA
BE	0	0	8	0	2	0	0	0	1	0	0	0	0	0	0	0	0	4	1	0	0	20	0	0	6	0	0	161	129	126	BE
BG	6	0	2	1	15	0	52	19	16	1	1	3	0	0	16	22	0	1	2	7	24	3	0	0	3	-0	0	421	380	288	BG
BY	0	0	10	5	154	1	16	4	81	8	2	8	0	0	5	59	0	4	26	1	5	21	0	0	9	-0	0	711	646	439	BY
СН	0	0	3	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	5	4	0	0	3	0	0	162	149	132	СН
cv	0	0	0	0	0	0	0	0	ů 0	0	0	0	0	0	11	0	0	0	0	0	1		0	0	0	0	0	21	16	то <u>-</u> Б	CV
C7	0	0	10	1	12	1	3	2	3	1	3	5	0	0	0	4	0	3	1	0	т 2	13	0	0	8	-0	0	397	356	338	C7
	0	0	20	6	70	1	2	1	10	7	ງ ງ	J	0	0	1	4	0	24	2/	0	10	124	0	0	46	2	0	1775	1525	1471	
	0	0	00	0	10	4	0	1	12	2	2	4	0	0	1	1	0	24	15	0	10	104	0	0	40	2	0	100	1020	100	
	0	0	9	2	10	0	1	0	10	г	0	1	0	0	0	1	0	1	15	0	0	33	0	0	5	0	0	100	131	125	
EE	0	0	10	2	10	0	1	1	19	5	1	1	0	0	0	4	0	1	17	0	01	0 10	0	0	2	-0	1	140	1101	0/ 1170	EE
ES	0	0	10	1	0	80	1	1	3	1	1	1	-0	-0	0	1	-0	68	2	0	81	19	-0	2	40	0	1	1404	1191	1179	ES
H	0	0	7	14	36	0	2	0	74	27	0	2	0	0	2	9	0	7	45	0	1	27	0	0	12	0	0	518	426	297	FI
FR	0	0	52	4	19	17	2	1	7	3	3	2	0	0	1	2	0	83	8	0	57	140	0	1	55	-1	0	2116	1772	1737	FR
GB	0	0	15	5	9	1	1	0	4	2	0	0	0	0	0	2	0	47	7	0	1	70	0	0	32	1	0	620	461	447	GB
GE	0	0	0	0	2	0	2	0	18	0	0	0	0	0	25	5	0	0	0	2	1	1	3	0	1	-0	0	108	99	15	GE
GL	0	0	0	1	0	0	0	-0	2	0	0	0	0	0	0	0	0	1	0	0	0	1	0	-0	77	0	0	93	13	9	GL
GR	10	0	2	1	9	0	14	11	7	0	1	2	-0	0	14	8	0	1	1	4	84	3	0	1	2	-0	0	431	335	271	GR
HR	1	0	2	0	14	0	5	9	2	0	4	3	0	0	0	2	0	1	1	0	22	3	0	0	2	-0	0	239	209	182	HR
HU	1	0	5	1	42	1	17	19	4	1	6	12	0	0	1	8	0	2	2	0	13	7	0	0	5	-0	0	410	382	332	HU
IE	0	0	3	1	2	0	0	0	1	0	0	0	0	0	0	0	0	13	1	0	0	8	0	0	10	-0	0	105	73	71	IE
IS	0	0	0	0	0	0	0	-0	1	0	0	0	0	-0	0	0	0	3	0	0	0	1	-0	0	13	0	0	29	13	9	IS
IT	2	1	8	1	24	4	7	10	6	1	13	5	-0	0	1	3	-0	7	3	0	204	12	0	2	15	-0	2	1376	1131	1073	IT
KG	0	0	0	0	0	0	0	0	6	0	0	0	19	2	2	0	89	0	0	0	0	0	7	0	6	-0	0	211	196	4	KG
КZТ	1	0	9	11	37	1	14	2	1170	9	1	4	15	21	66	108	111	12	16	7	11	20	42	0	38	-1	1	2803	2656	273	КZТ
IТ	0	0	5	3	48	0	2	1	18	6	0	2	0	0	1	7	0	2	20	0	1	13	0	0	4	0	0	247	208	171	IT
111	0	0	1	0	.0	0	0	0	-0	0	0	0	0	0	0	0	0	0	_0	0	0	1	0	0 0	0	0	0	16	13	13	111
IV	0	0	5	3	33	0	2	1	20	7	0	1	0	0	1	6	0	2	21	0	1	12	0	0	3	0	0	222	183	144	IV
MD	0	0	1	0	12	0	16	2	20	0	0	1	0	0	3	10	0	0	1	2	2	12	0	0	0	0	0	103	105	50	MD
ME	1	0	1	0	12	0	10	2	9	0	0	0	0	0	0	19	0	0	1	ے م	10	1	0	0	0	-0	0	103	40	26	ME
MK	6	0	0	0	2	0	2	7	1	0	0	1	-0	0	2	1	0	0	0	0	01	1	0	0	1	-0	0	00	40	50	MK
MAT	0	0	0	0	2	0	0	1	1	0	0	1	0	0	2	1	0	0	0	0	0	1	0	0	1	-0	0	92	01	1	
	0	0	10	0	0	0	0	0	0	0	0	0	0	-0	0	0	-0	0	0	0	1	0	0	0	0	0	0	170	120	100	
INL	0	0	19	1	12	0	0	0	1	12	0	0	-0	0	0	0	0	5	3	0	0	51	0	0	ð 01	0	0	1/8	132	128	INL
NU	0	0	11	44	13	0	1	0	15	13	0	0	0	0	1	2	0	13	17	0	1	51	0	0	21	0	0	397	293	215	NU
PL	1	0	41	9	402	2	16	8	31	13	6	19	0	0	3	36	0	10	50	1	10	72	0	0	28	0	0	1547	1369	1251	PL
PI	0	0	1	0	1	83	0	0	0	0	0	0	0	0	0	0	-0	43	0	0	3	2	0	0	11	0	0	250	190	189	PI
RO	6	0	7	2	72	1	200	36	29	2	4	16	0	0	18	64	0	3	6	9	28	10	0	0	6	-0	0	899	836	647	RO
RS	6	0	3	1	19	0	27	49	3	0	2	5	0	0	2	5	0	1	2	1	18	4	0	0	3	-0	0	344	315	226	RS
RUE	4	0	71	75	438	3	113	19	7791	88	9	33	2	10	201	748	23	66	193	33	51	168	28	1	241	-2	4	13125	12344	2434	RUE
SE	0	0	22	34	45	1	2	0	42	61	1	2	0	0	2	7	0	14	77	0	1	92	0	0	24	0	0	792	584	465	SE
SI	0	0	1	0	5	0	1	1	1	0	5	1	0	0	0	1	0	0	0	0	8	1	0	0	1	-0	0	106	94	88	SI
SK	0	0	4	1	45	0	7	6	2	1	3	9	0	0	1	5	0	1	2	0	4	5	0	0	3	-0	0	246	230	209	SK
ТJ	0	0	0	0	0	0	0	0	2	0	0	0	25	2	1	0	33	0	0	0	0	0	7	0	10	-0	0	96	78	2	ТJ
ТΜ	0	0	1	1	2	0	1	0	59	1	0	0	3	32	15	5	44	1	1	1	2	2	31	0	39	-0	0	317	240	25	ТΜ
TR	5	0	5	2	25	1	39	11	85	1	2	4	0	0	745	63	0	4	4	37	130	8	18	3	10	-0	1	1504	1287	334	TR
UA	4	0	19	8	289	1	137	24	325	9	6	30	0	1	62	498	1	8	27	25	31	32	2	1	13	-0	0	2197	2058	1040	UA
UZ	0	0	1	1	3	0	1	0	62	1	0	0	15	12	10	6	97	1	1	1	1	2	18	0	22	-0	0	357	312	23	UZ
ATL	0	0	103	91	98	73	4	0	378	40	2	5	0	-0	3	21	0	752	70	1	18	325	0	0	2189	8	3	6852	3484	2855	ATL
BAS	0	0	34	18	120	1	5	2	65	47	1	5	0	0	2	13	0	12	138	0	3	95	0	0	20	1	0	1123	852	729	BAS
BLS	4	0	7	4	60	0	96	15	232	4	2	8	0	0	204	198	0	4	9	76	45	13	3	1	-15	-0	0	1301	1165	457	BLS
MED	25	21	38	9	86	26	68	56	56	6	25	18	-0	-0	382	47	-0	45	16	24	2579	61	11	32	93	1	6	7460	4591	3888	MED
NOS	0	0	70	42	49	4	3	1	20	16	0	2	0	0	1	7	0	77	47	0	4	343	0	0	80	6	1	1954	1397	1315	NOS
AST	1	n	3	3	12	1	0	2	245	2	1	2	26	25	305	२२	81	۵.	4	6	72	5	230	3	256	-0	1	1727	1134	143	AST
NOA	5	6	10	2	16	11	15	â	13	1	4	<u>-</u>	_0		62	10	0	14	3	4	677	15		42	220	-0	-1	1040	073	850	NOA
SUM	98	30	741	413	2452	323	918	358	10073	302	123	227	106	107	2107	2054	481	1378	906	245	4294	1031	422	03	3700	16	27	60774	515	000	SUM
FXC	62	2	475	242	2011	207	712	272	0063	275	22	18/	 	201	1028	1725	300	460	612	121	206	1071	167	1/	826	10	15	50/14	34160	17220	FXC
FII	02 2Ω	ר ר	332	27J	2011	107	332	120	207	1/2	50	204	01	02	72	100	0.05	2/10	307	-734 194	550	7/5	101	۹. ۲4	227	л	۲٦ م		12615	11470	FII
omic	106	2 25	012	92 595	2602	700	1000	302	13267	742	126	2E3	174	100	1J 2010	7230	601	2516	1066	2J 270	550	17J	1210	202	551	- 0	0	71110	57605	32075	omic
CIIIIS	T00	55 TM	212	000	2092 DI	100 DT	1000	Dc 732	13207	202	C1 720	2:00 CI/	1/4 TI	190	2010	2220	091	∠040 ∧⊤i	T000	219	3030	2290	1210	292	DIC			11113	21093	32913 ELL	entis
	IVI r \	IVII	INL	NU	۳L	гΙ	πU	NЭ	NUE	JE	21	JN	IJ	1 111	ιr	UA	υL	AIL	DHO	DLC	IVIED	1102	MDI	NUA	DIC	כויוים	VUL	JUIVI	LAC	EU	

Table C.3: 2007 country-to-country blame matrices for **reduced nitrogen** deposition. Units: 100 Mg of N. **Emitters** \rightarrow , **Receptors** \downarrow . (Based on HIRLAM meteorology.)

Table C.3 Cont.: 2007 country-to-country blame matrices for **reduced nitrogen** deposition. Units: 100 Mg of N. **Emitters** \rightarrow , **Receptors** \downarrow . (Based on HIRLAM meteorology.)

	MK	ΜT	NL	NO	PL	ΡT	RO	RS	RUE	SE	SI	SK	ТJ	ТΜ	TR	UA	UZ	ATL	BAS	BLS	MED	NOS	AST	NOA	BIC	DMS	VOL	SUM	EXC	EU	
AL	1	0	0	0	0	0	2	6	0	0	0	0	0	0	1	1	0	0	0	0	-1	0	0	3	1	0	-0	106	103	34	AL
AM	0	0	0	-0	0	0	0	0	1	0	0	0	0	0	34	0	-0	0	0	-0	0	0	24	0	1	0	-1	138	114	1	AM
AT	0	0	5	0	5	1	4	1	1	0	16	4	-0	0	0	1	0	0	0	0	1	0	0	1	4	0	0	553	546	511	AT
AZ	0	0	0	0	0	0	0	0	12	0	0	0	0	2	24	1	0	-0	0	-0	0	0	31	0	2	0	-1	272	240	3	AZ
BA	0	0	1	0	3	0	6	10	1	0	2	3	0	0	1	1	0	0	0	0	0	0	0	2	2	0	-0	169	164	100	BA
BE	0	0	44	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	0	0	-2	0	0	1	0	-0	329	329	328	BE
BG	3	0	0	0	4	0	53	15	5	0	1	2	0	0	14	11	0	0	0	-0	1	0	1	4	3	0	0	341	331	268	BG
BY	0	0	4	1	130	1	24	5	24	4	2	5	-0	0	5	55	0	0	-1	0	1	1	1	1	8	0	-0	986	974	324	BY
СН	0	0	2	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	0	0	2	0	0	368	365	154	СН
CY	-0	0	0	0	0	0	0	0	0	0	0	0	-0	0	4	0	-0	0	0	-0	-0	0	1	0	0	-0	-0	8	7	3	CY
C7	0	0	7	0	29	0	3	1	1	1	2	13	-0	0	0	2	0	0	-0	0	1	-0	0	0	3	0	-0	499	495	481	C7
DE	0	0	265	0	48	3	3	2	1	3	1	3	-0	0	0	3	0	2	-4	-0	2	-12	0	1	12	1	-0	3560	3566	3481	DE
	0	0	10	1	70	0	1	0	1	1	0	0	-0	0	0	1	0	0	-7	-0	0	-12	0	0	2	0	-0	270	281	276	
EE	0	0	10	0	11	0	1	0	5	7	0	1	0	0	1	3	0	0	-2	0	0	-5	0	0	2	-0	0	105	102	210	EE
	0	0	т Т	0	2	50 50	1	0	0	0	1	1	0	0	0	1	0	0	-0	0	5	1	0	0	12	2	2	1762	1750	1750	
	0	0		0	3	52	1	1	10	14	1	1	-0	0	0	10	0	-0	1	0	-5	1	1	0	12	-2	-5	1/02	1759	2000	
	0	0	3	4	24	10	4	1	19	14	0	1	0	0	3	10	0	14	1	0	1	2	1	0	9	10	1	440	420	280	
FR	0	0	43	0	8	10	3	2	0	1	2	2	0	0	0	2	0	-14	0	0	-1	-24	0	4	22	-10	-1	4088	4111	4002	FR
GB	0	0	13	0	3	1	1	0	1	1	0	0	0	0	0	1	0	-4	-0	-0	0	-5	0	0	14	-4	-0	1107	1105	1101	GB
GE	0	0	0	0	1	0	2	0	19	0	0	0	0	1	64	4	0	0	0	0	0	0	15	1	2	0	-1	244	227	9	GE
GL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	29	0	0	36	6	5	GL
GR	3	0	0	0	3	0	10	6	2	0	0	1	0	0	14	4	0	0	0	-0	-1	0	0	6	4	-0	-1	287	279	233	GR
HR	0	0	1	0	3	0	5	7	0	0	11	3	-0	0	0	1	0	0	0	0	0	0	0	1	2	0	0	166	161	139	HR
ΗU	1	0	2	0	8	1	28	16	1	0	11	27	0	0	1	3	-0	0	-0	0	0	0	0	2	3	0	-0	459	453	421	HU
IE	0	0	1	-0	1	0	0	0	0	0	0	0	0	0	0	0	0	-3	-0	-0	0	-1	0	0	5	-6	0	393	399	398	IE
IS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	0	0	0	0	0	0	9	-0	0	25	16	5	IS
IT	0	0	3	0	4	2	7	3	1	0	11	3	-0	0	2	2	0	1	0	0	-14	1	0	12	7	-1	-3	1870	1866	1831	IT
KG	0	0	0	0	0	0	0	0	4	0	0	0	33	3	3	1	79	0	0	0	0	0	36	0	5	0	0	316	275	2	KG
KZT	0	0	1	0	16	0	16	3	326	1	1	2	23	43	94	30	110	0	1	0	1	1	217	2	45	1	-4	4491	4227	89	KZT
LT	0	0	3	1	51	0	3	1	7	4	0	1	-0	0	1	5	0	0	-1	0	0	1	0	0	3	0	0	287	283	235	LT
LU	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	0	0	-0	0	0	0	0	-0	29	29	29	LU
LV	0	0	3	1	23	0	3	1	5	5	0	1	-0	0	1	4	0	0	-0	0	0	1	0	0	2	0	0	193	189	154	LV
MD	0	0	0	0	4	0	39	2	2	0	0	1	0	0	3	20	0	0	-0	-0	0	0	0	0	1	0	0	140	138	59	MD
ME	0	0	0	0	0	0	1	5	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1	0	-0	55	53	21	ME
MK	14	0	0	0	1	0	3	8	0	0	0	0	0	0	2	1	0	0	0	0	0	0	0	1	1	0	-0	70	68	34	MK
MT	-0	1	0	0	0	0	0	0	0	0	0	0	0	-0	0	0	-0	0	0	-0	-0	0	0	0	0	-0	-0	1	2	2	MT
NL	0	0	328	0	1	0	0	0	-0	0	0	0	0	-0	0	0	0	0	-1	-0	0	-7	0	0	0	-0	-0	504	511	510	NL
NO	0	0	6	87	7	0	1	0	3	8	0	0	0	0	1	1	0	1	1	0	0	2	0	0	17	-0	0	243	221	109	NO
PL	1	0	25	1	1166	1	24	6	11	9	5	20	-0	0	4	30	0	1	-4	0	2	-0	1	2	11	1	0	1967	1953	1835	PL
ΡT	-0	0	1	0	0	151	0	-0	0	0	0	0	0	0	0	0	0	-4	0	0	0	0	0	0	3	-1	-0	229	231	231	PT
RO	3	0	2	0	20	1	693	35	9	0	3	11	-0	0	18	41	0	0	0	-0	2	0	2	5	8	0	0	1113	1094	935	RO
RS	4	0	1	0	4	0	37	158	1	0	2	4	0	0	3	4	0	0	0	0	0	0	0	3	3	0	-0	349	343	146	RS
RUE	3	0	18	10	261	2	152	29	5951	29	5	20	4	26	265	432	31	4	13	2	8	14	154	10	206	6	11	10978	10549	1189	RUE
SE	0	0	13	20	33	0	5	1	10	203	0	2	0	0	3	8	0	1	-1	0	1	1	1	1	15	-0	0	695	677	470	SE
SI	0	0	0	0	1	0	2	1	0	0	43	1	0	0	0	0	0	0	-0	0	0	-0	0	0	1	0	-0	124	122	118	SI
SK	0	0	2	0	23	0	10	4	1	0	3	75	0	0	0	3	0	0	0	0	1	0	0	0	2	0	0	250	246	232	SK
ТJ	0	0	0	0	0	0	0	0	1	0	0	0	81	2	1	0	20	-0	0	0	0	0	41	0	4	0	-1	162	118	0	ТJ
ТМ	0	0	0	0	0	0	1	0	9	0	0	0	4	93	15	0	22	-0	0	0	0	0	46	0	10	0	-2	260	206	4	ТМ
TR	1	0	1	0	10	0	24	6	25	0	1	2	0	1	1288	24	0	0	0	-2	-1	1	113	17	20	-0	-11	1669	1532	128	TR
UA	3	0	7	1	158	1	185	23	108	3	4	20	0	2	58	753	2	1	0	-1	4	2	8	5	20	1	1	1902	1860	665	UA
UZ	0	0	0	-0	0	0	1	0	9	0	0	0	24	23	13	1	139	-0	0	0	0	0	32	0	8	0	-1	337	297	4	UZ
ATL	0	0	57	32	57	58	10	3	73	11	1	5	0	0	3	18	0	-13	8	0	3	19	1	3	1350	-0	1	4069	2697	2448	ATL
BAS	0	0	28	7	123	1	12	3	19	92	1	4	0	0	5	16	0	1	-15	0	1	-2	1	1	14	-1	1	958	956	862	BAS
RIS	2	0	2	0	22	0	97	14	87	1	1	5	0	1	100	109	1	0	1	-4	3	1	18	6	11	-0	2	818	781	273	RIS
MED	6	7	13	1	25	15	45	20	11	1	17	q	0	0	354	18	0	3	1	-1	-68	7	59	204	62	-3	-6	2895	2638	2118	MED
NOS	n n	0	140	21	28	2	5	25	4	13	0	2	-0	0	1	6	0	3	_2	0	1	-21	0	1	42	2	0	1672	1646	1508	NOS
Δςτ	n	0	رب <u>د</u> ۱	 ^	20 /	<u>د</u>	6	1	ຊາ	10	n	1	20	۸۵	150	7	40	_0	- <u>-</u>	_n	۰ ٦.	0	2701	6	62	ے م	_21	2012	1064	7320	Δςτ
	n	1	0 2	0	ч л	1	0 A	3 T	1	0	1	1	73	0 1 0	16	י ר	و ب ۱	-0	0	.0	_วo	1	2101	522	20	-0 2	-41	765	2004	33 212	NOA
SUM	_/0	11	2 1075	120	4 23/10	4	0 15/1	ر ۵1۸	1	414	150	260	207	2/17	2672	1640	455	_22	. /	-U	-20 _95	19 _19	2 3506	922 843	30 2122	-2	-1 _//6	60010	241	213	SUM
EXC	79 /1	2	7010	109	2040	222	1360	350	6570	206	120	200 222	201 160	<u>∠</u> +7 107	10/2	1/65	105	10	-4 0	-0	-05	-10 -10	704	100	E122	-19 12	-+U 1/	00010	12710	J3E13	EXC
EII	41 10	с С	700	3U 770	2010	202	1200	07 07	0019	290	102	233 170	U 100	191	1943 67	12/	+U5 1	-10	12	-0	0	-23 16	124	EU TOO	040 140	-13 01	-14		+J/10	20043	EII
LU	14	15	1007	196	7410	462	1622	91 160	7/00	249 A15	162	267	-0 202	363	3366	1751	1 672	-20	-12	-0	-0	-40 A	7750	00 1025	140	-21	-1	67102	57010	20220	LU
CIIIIS	.)9	C1	T081	100	2403 DI	403 DT	1032	400 DC	1499 DIIE	410	1.07	207	203 ⊤ 1	202 TM	00CC	1101	117	U 1.1.1		U DIC			1200 ACT	1922	U DIC			01103	21910	J∠:)44	enns
	IVI IN	IVII	INL	NU	۳L	ГΙ	rίU	ĸэ	NUE	JE	21	JN	١J	I IVI	IR	UA	υL	ALL.	DHD	DLD	IVIED	1103	AJI	NUA	DIC	כויוים	VUL	JUIVI	LAC	EU	

Table C.4: 2007 country-to-country blame matrices for AOT40^{3m}_f. Units: ppb.h per 15% emis. red. of NO_x. Emitters \rightarrow , Receptors \downarrow . (Based on HIRLAM meteorology.)

	AL	AM	AT	ΑZ	ΒA	BE	BG	ΒY	СН	CY	CZ	DE	DK	EE	ES	FI	FR	GB	GE	GR	HR	HU	IE	IS	IT	KG	KZT	LT	LU	LV	MD	
AL	457	1	61	1	91	5	118	8	13	0	24	80	2	0	95	2	132	36	1	218	2	59	5	1	498	0	1	3	1	1	5	AL
AM	0	242	3	197	1	1	5	5	1	1	2	8	1	0	7	2	8	7	67	5	1	4	1	0	7	0	15	1	0	1	1	AM
AT	1	0	400	0	8	-5	9	6	80	0	68	337	3	0	108	2	267	16	0	5	2	66	6	1	319	0	0	3	2	1	2	AT
AZ	0	44	4	594	1	1	6	9	1	1	4	14	2	1	9	4	12	12	59	5	2	6	1	0	8	0	70	3	0	1	2	AZ
BA	9	1	118	1	448	7	36	9	20	0	62	126	3	0	129	3	177	33	1	27	2	156	5	1	557	0	1	3	1	1	4	BA
BE	0	0	16	0	0	-498	1	4	5	0	9	59	6	1	47	2	257	-51	0	1	2	5	18	2	11	0	0	3	7	2	0	BE
BG	20	2	55	3	37	5	684	20	10	1	39	84	5	1	58	6	70	28	3	165	3	94	4	1	138	0	5	6	1	3	24	BG
BY	0	1	12	2	3	4	5	227	3	0	16	67	6	6	23	18	43	24	1	3	6	18	5	1	17	0	7	54	1	15	4	BY
CH	1	0	64	0	7	6	4	2	370	0	17	190	2	0	193	1	806	23	0	4	1	13	8	1	355	0	0	2	2	1	0	CH
CY	6	9	14	10	8	3	47	11	4	604	9	29	2	1	37	3	33	15	11	156	2	15	2	1	68	0	5	3	0	1	5	CY
C7	1	0	144	0	7	-4	6	12	24	0	159	332	- 5	1	61	4	187	20	0	4	3	76	8	1	80	0	1	3	3	1	3	C7
DF	0	0	41	0	2	-29	2		29	0	30	354	3	1	65	3	304	0	0	2	3	13	13	2	38	0	0	5	6	2	1	DE
חא	0	0	2	0	1	10	1	15	1	0	50	18	87	5	23	10	60	66	0	1	7	3	28	1	7	0	1	17	1	11	0	חא
FE	0	0	3	0	0	-10	1	28	1	0	6	11	21	30	10	13	25	11	0	1	11	3	20	2	5	0	2	24	0	32	1	FF
ES	1	0	2	0	3		2	20	5	0	1	24	21	0	1106		206	20	0	5	1	л Л	5	1	55	0	-	1	1	0	0	ES
	0	0	1	0	0	1	2	1	1	0	4	10	4	4	1190	20	10	16	0	0	1	4	2	1	55	0	0	1	1	2	0	
	1	0	20	0	0	15	0	4	21	0	11	19	4	4	0 100	20	000	10	0	U E	1	7	3 12	1	2	0	0	4	2	3 1	0	
	1	0	20	0	4	-15	2	3	21	0	11	94	11	1	190	1	900	-5	0	5	1	1	12	1	99	0	0	2	с С	1	0	
GB	0	0	2	0	0	-5	1	4	1	0	1	19	11	1	11	3	43	-253	0	1	2	1	31	2	0	0	0	2	0	2	0	GB
GE	1	85	1	252	2	1	13	12	1	1	5	15	2	1	11	5	14	13	299	9	2	10	2	1	13	0	21	3	0	2	4	GE
GL	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	2	3	0	0	1	0	1	0	0	0	0	0	0	0	0	GL
GR	63	1	43	2	38	5	353	12	10	0	25	70	3	1	87	4	91	28	2	1037	3	50	4	1	272	0	5	4	1	2	12	GR
HR	5	1	183	1	160	6	21	10	25	0	77	168	3	1	135	3	199	33	1	14	2	197	6	1	618	0	1	3	1	1	4	HR
HU	3	1	167	1	42	2	17	22	19	0	85	196	4	1	71	5	138	27	1	8	3	524	6	1	205	0	1	8	1	3	5	HU
IE	0	0	2	0	0	-1	1	3	2	0	2	18	7	1	9	2	34	52	0	1	1	1	42	2	9	0	0	2	0	1	0	IE
IS	0	0	1	0	0	1	0	0	1	0	1	9	2	0	6	1	20	48	0	0	2	0	10	16	3	0	0	0	0	0	0	IS
IT	7	0	97	0	33	5	17	3	41	0	28	102	2	0	236	2	419	33	0	35	2	42	6	1	1156	0	0	1	1	1	1	IT
KG	0	4	4	8	1	1	2	4	2	0	3	14	1	1	17	3	18	8	3	3	2	3	1	0	10	234	609	1	0	1	1	KG
KZT	0	4	4	10	1	1	3	12	2	0	4	16	2	2	12	9	16	14	4	2	5	4	2	1	8	6	399	4	0	2	2	KZT
LT	0	0	7	1	2	4	3	83	3	0	14	87	21	8	20	21	48	38	1	2	9	12	7	2	13	0	3	155	1	25	3	LT
LU	0	0	33	0	1	-20	2	4	8	0	28	217	5	1	64	3	547	8	0	2	2	12	10	2	21	0	0	2	-31	1	1	LU
LV	0	0	4	1	1	3	1	51	2	0	8	63	21	13	13	29	34	39	1	1	9	6	7	1	7	0	3	69	1	64	2	LV
MD	2	4	28	7	11	5	51	49	7	0	41	86	4	4	32	13	60	30	7	22	5	58	5	1	43	0	9	14	1	5	188	MD
ME	71	1	82	1	210	5	86	9	16	0	34	98	3	0	104	2	147	36	1	92	2	98	5	1	522	0	1	3	1	1	5	ME
MK	95	1	61	1	60	4	291	10	12	0	30	84	2	0	83	3	96	28	1	269	2	84	4	1	273	0	2	3	1	1	9	MK
MT	12	0	41	0	20	5	28	3	10	0	17	69	1	0	275	2	288	26	0	89	2	18	6	1	754	0	1	2	1	1	1	MT
NL	0	0	8	0	0	-96	0	6	2	0	4	56	10	1	28	2	100	-78	0	1	3	2	23	2	5	0	0	5	1	2	1	NL
NO	0	0	1	0	0	-1	0	2	1	0	1	12	5	1	8	9	17	30	0	1	7	1	8	3	4	0	0	2	0	2	0	NO
PL	1	0	37	1	6	1	4	49	7	0	55	187	9	2	40	11	96	28	1	4	7	51	9	2	42	0	1	18	2	6	2	PL
ΡT	0	0	4	0	2	2	1	1	3	0	2	12	0	0	536	0	108	21	0	2	1	3	6	1	18	0	0	0	0	0	0	ΡT
RO	6	2	60	4	29	4	115	30	12	0	46	97	4	2	48	8	76	27	3	33	3	160	4	1	99	0	3	9	1	4	30	RO
RS	27	1	101	1	124	5	110	13	17	0	56	124	3	1	84	3	114	32	1	60	2	192	5	1	284	0	1	5	1	2	9	RS
RUE	0	1	1	5	0	1	1	9	0	0	2	7	1	1	3	4	5	5	2	1	2	2	1	0	2	0	19	3	0	2	1	RUE
SE	0	0	1	0	0	-0	0	4	1	0	1	23	5	3	8	9	21	33	0	0	6	1	7	2	3	0	0	5	0	4	0	SE
SI	1	0	275	0	22	-3	12	8	32	0	64	178	3	1	125	3	193	22	0	5	2	120	7	1	703	0	1	3	1	1	4	SI
SK	2	1	129	1	23	-1	11	31	15	0	118	194	4	1	60	5	125	22	1	9	3	358	6	1	145	0	1	9	2	3	4	SK
ТJ	0	4	3	6	1	1	2	3	1	0	2	9	1	0	15	2	14	6	2	2	1	3	1	0	9	50	329	1	0	1	0	ТJ
тм	0	12	6	33	2	2	4	9	3	1	5	21	2	2	18	8	23	15	9	4	5	6	2	0	14	3	306	3	0	2	1	ТМ
TR	4	25	13	23	6	2	55	15	3	4	10	29	3	1	24	4	28	16	22	55	2	18	2	1	37	0	7	4	0	2	9	TR
UA	1	5	21	10	6	4	20	71	5	0	29	70	5	4	24	14	47	28	7	9	6	48	4	1	28	0	17	14	1	6	27	UA
U7	0	8	6	18	1	2	_3	9	2	0	-5	21	2	1	16	8	21	16	6	3	5	.0	2	1	11	17	514	3	0	2		U7
ATI	n	n	n	0	0	_0	0	0	0	n	0		0	0	2	n		1	n	0	0	0	1	Û.	0	0	0	0	n	ĥ	0	ATI
RAS	0	n	2	0	n	-0 -1	n	15	1	n	5	18 48	1	a	∠ 11	22	ر 1	50	n	n	10	2	11	2	4	n	1	17	0	12	1	RAS
BIC	1	7	∠ ۸	10	1	-1	10	11	1	0	5	70 16	1 2	9 1	۲T ۲T	<u>د د</u>	11	10	20	0	10	о	1	ے م	4	0	т 6	יד זי	0	1 1	0	BIC
DL3	1 C	1	4 10	12	0	1	70	2 11	1 2	U A	0	10	1	U T	0 74	4	11 72	01	2U 1	0 70	2	0 10	1	0	122	0	1	5 1	0	U T	Ö D	DL3
	5	U	13	1	9	2	28	3	3	4	U O	10	1	1	/4	1	15	20	1	10	1	10	1 L	1	122	0	1	1	0	1	2	
NO2	0	U	1	1-	U 1	-0	U	2	1	Ű	U	1	3 1	T	5	2	10	-32	0	Ű	1	0	ŏ 1	U L	1	10	100	1	0	1	U 1	NU5
ASI	0	5	2	15	1	1	3 10	3	1	0	2	1	1	0	8	2	ð 20	5	3	0	1	2	1	U	(12	120	1	0	T	1	AST
NUA	2	0	5	0	3	1	12	1	2	1	2	9	0	U	0/	Ű	30	4	0	41	0	3	1	U	54	0	1	0	0	U	1	NUA
EXC	2	3	12	9	5	-1	12	13	4	0	8	31	2	2	48	6	50	9	4	12	3	13	3	1	38	3	80	5	0	2	3	EXC
ΕU	4	0	40	1	9	-8	37	12	13	1	23	104	4	2	218	6	237	4	0	41	4	41	10	1	144	0	1	8	1	4	3	ΕU
	AL	AM	AT	ΑZ	ВA	BE	ВĞ	ВY	CH	CΥ	CZ	DE	DK	ЕE	ES	FL	FR	GB	GE	GR	HR	ΗU	IE	IS	IT	КĠ	κζΤ	LT	LU	LV	MD	

Table C.4 Cont.: 2007 country-to-country blame matrices for $AOT40_f^{3m}$. Units: ppb.h per 15% emis. red. of NO_x. **Emitters** \rightarrow , **Receptors** \downarrow . (Based on HIRLAM meteorology.)

	ME	MK	MT	NL	NO	PL	PΤ	RO	RS	RUE	SE	SI	SK	ТJ	ТΜ	TR	UA	UZ	ATL	BAS	BLS	MED	NOS	AST	NOA	BIC	DMS	VOL	EXC	EU	
AL	121	68	1	5	6	45	6	109	301	35	4	14	16	0	0	28	45	0	29	5	8	367	16	1	11	229	0	0	2723	1539	AL
ΔΜ	0	1	0	1	2	14	1	15	3	134	2	1	2	0	0	223	28	6	7	3	12	11		86	2	121	0	0	1032	07	ΔΜ
AT	2	1	0	-		14 6 A	10	10	1	104	-	01	2	0	0	225	20	0	41	6	12	40	6	00	2	101	0	0	2012	1000	AT
AT	2	1	0	-0	-	04	10	42	15	22	5	81	21	0	0		20	0	41	0	2	49	0	0	2	191	0	0	2012	1829	A1
AZ	1	1	0	2	5	21	1	20	3	447	4	1	3	0	34	113	44	25	12	5	12	10	6	120	2	156	0	0	1603	148	AZ
ΒA	62	6	1	6	6	70	9	95	163	33	4	30	37	0	0	14	53	0	33	6	4	179	17	1	7	220	0	0	2530	1695	BA
BE	0	0	0	-196	9	27	6	5	1	17	8	3	4	0	0	1	7	0	63	9	0	5	-167	0	0	142	0	0	-199	-248	BE
BG	21	43	0	5	9	95	5	434	165	149	8	10	31	0	0	55	182	1	26	11	63	78	15	3	5	214	0	0	2787	2033	BG
BY	1	1	0	4	16	166	2	25	5	240	21	2	12	0	0	14	125	0	29	30	3	6	13	3	1	116	0	0	1227	570	BY
СЦ	1	1	0	5	10	21	16	10	7	10	2	10	6	0	0	2	120	0	17	2	0	52	11	0	2	204	0	0	2162	1751	СЦ
CII CV	-	1	0	-5	-	21	2010	10	22	10	1	10	6	0	1	1401	70	1	16	5	40	507		26	7	204	0	0	2103	1150	CV
CT CT	5	8	0	3	5	35	3	22	23	150	4	3	0	0	1	1421	18	1	10	0	40	597	8 _	20		254	0	0	2922	1152	
CZ	1	1	0	-10	9	116	8	37	11	31	9	22	73	0	0	(46	0	45	12	1	20	(0	1	163	0	0	1502	1345	CZ
DE	1	0	0	-45	12	80	8	11	3	25	13	4	9	0	0	2	15	0	60	-0	0	12	-30	0	1	166	0	0	1041	937	DE
DK	0	0	0	-20	52	63	4	3	1	64	55	1	2	0	0	2	10	0	112	-78	0	3	-53	0	0	215	0	0	464	306	DK
EE	0	0	0	4	24	63	1	6	1	104	55	0	3	0	0	4	24	0	35	80	1	2	26	1	0	107	0	0	646	442	EE
ES	1	1	0	2	3	7	124	3	3	5	1	2	1	0	0	1	2	0	106	1	0	83	9	0	5	227	0	0	1705	1677	ES
FI	0	0	0	2	10	14	1	1	0	24	15	0	0	0	0	0	2	0	16	18	0	1	8	0	0	43	0	0	178	128	FI
FR	1	1	0	-18	-0	18	13	4	4	11	4	4	3	0	0	1	4	0 0	70	5	0	50	_21	0	2	156	0 0	0	1428	1368	FR
CD	-	-	0	12	27	10	10	т О	1	20	14	т 0	1	0	0	1	-	0	02	10	0	50	15	0	2	140	0	0	41	100	CD
GB	0	0	0	-13	21	13	2	2	1	20	14	0	1	0	0	1	5	0	93	12	0	3	-15	0	0	148	0	0	-41	-105	GD
GE	1	1	0	1	5	29	1	36	6	395	4	1	4	0	13	199	76	9	13	6	48	13	6	63	2	155	0	0	1587	202	GE
GL	0	0	0	0	1	0	0	0	0	2	1	0	0	0	0	0	0	0	3	0	0	0	1	0	0	13	0	0	15	10	GL
GR	26	73	1	5	7	60	6	163	125	102	5	9	17	0	0	88	106	0	26	7	37	374	14	2	9	240	0	0	3023	2347	GR
HR	20	3	0	6	8	80	9	81	101	33	5	83	41	0	0	12	53	0	41	7	4	223	16	1	5	205	0	0	2414	1974	HR
HU	7	2	0	2	8	159	7	155	101	46	8	54	122	0	0	13	109	0	38	10	2	54	12	1	3	184	0	0	2362	1975	HU
IE	0	0	0	-6	16	11	1	2	1	15	9	0	1	0	0	1	4	0	93	8	0	3	8	0	0	123	0	0	247	201	IE
IS	0	0	0	1	8	2	0	0	0	7	4	0	0	0	0	0	1	0	61	3	0	1	9	0	0	101	0	0	145	110	IS
IT	10	6	2	2	6	33	13	20	31	16	3	34	12	0	0	7	15	0	52	4	2	313	15	0	9	236	0	0	2489	2308	IT
ĸc	1	0 0	-	- 1	3	0	1	5	2	167	2	1	1	175	23	38	12	500	7	3	1	7	1	1/18	1	212	ů.	0 0	1001	112	ĸc
	0	0	0	2	0	20	1	11	2	610	7	1	2	2113	25	30	10	21	14	0	2	, E	7	140	1	171	0	0	1202	151	
1.7	1	0	0	2	0	20	1	11	2	1010		1	2	о 0	0	20	40	21	14	0 70	2	5	1	24	1	107	0	0	1323	101	1.7
L1	1	0	0	0	24	191	2	23	3	103	44	2	9	0	0	ŏ	59	0	41	13	2	5	20	1	0	127	0	0	1129	/04	L I
LU	0	0	0	-59	6	37	8	9	2	14	(5	(0	0	1	9	0	53	10	0	10	-22	0	1	144	0	0	971	919	LU
LV	0	0	0	6	23	108	1	13	2	128	52	1	5	0	0	7	43	0	37	79	1	3	26	1	0	113	0	0	843	568	LV
MD	3	3	0	4	12	180	3	448	25	228	12	5	39	0	1	43	467	1	33	16	54	23	15	7	2	191	0	0	2265	1192	MD
ME	448	27	1	6	6	56	7	121	317	36	4	17	25	0	0	20	55	0	31	5	6	241	16	1	10	252	0	0	2785	1558	ME
MK	46	327	1	4	5	56	7	176	327	47	4	12	20	0	0	29	62	0	26	6	11	138	12	1	9	227	0	0	2635	1598	MK
MT	8	8	-481	6	5	17	12	25	22	21	3	10	5	0	0	13	14	0	61	3	5	-100	14	0	13	248	0	0	1362	1218	MT
NL	0	0	0	-428	17	30	4	3	1	26	14	2	2	0	0	1	9	0	71	12	0	3	-269	0	0	155	0	0	-228	-297	NL
NO	0	0	0	-2	57	7	1	1	0	19	19	0	0	0	0	1	2	0	47	8	0	2	9	0	0	103	0	0	219	126	NO
PI	1	1	0	-1	18	337	5	31	11	67	27	11	35	0	0	8	60	0	48	31	1	12	14	1	1	140	0	0	1207	1044	PI
	1	0	0	1	20	1	240	21	2	4	1	1	1	0	0	1	200	0	177	1		21		0	2	100	0	0	1002	1072	
	11	0	0	1	10	4	540	2	2	4	1	11	1	0	1	24	2	1	111	10	20	21	14	0	2	190	0	0	1095	1073	
RU	11	9	0	4	10	157	5	808	99	117	9	11	00	0	1	34	231	1	29	12	30	39	14	4	3	193	0	0	2487	1850	RU
RS	61	27	1	6	(89	6	284	5//	48	6	21	41	0	0	18	80	0	30	((94	16	1	6	212	0	0	2651	1634	RS
RUE	0	0	0	1	3	10	0	5	1	265	4	0	1	0	1	6	22	1	5	5	2	1	3	2	0	34	0	0	402	63	RUE
SE	0	0	0	-1	31	16	1	1	0	27	39	0	1	0	0	1	3	0	38	18	0	1	9	0	0	92	0	0	256	180	SE
SI	4	1	0	-3	8	73	7	58	29	30	5	344	30	0	0	10	41	0	36	7	3	153	7	0	3	183	0	0	2421	2226	SI
SK	5	2	0	-3	8	198	7	96	48	56	9	41	315	0	0	14	121	0	40	11	2	35	8	1	2	176	0	0	2198	1860	SK
ТJ	1	0	0	1	2	6	1	4	2	127	2	1	1	616	46	32	10	622	5	2	1	6	3	250	1	310	0	0	1946	89	ТJ
ТМ	1	1	0	2	8	17	2	13	3	477	6	1	3	12	183	70	31	234	14	7	4	8	7	113	1	292	0	0	1582	179	ТМ
TR	3	6	0	2	6	43	2	76	20	228	4	3	8	0	2	974	120	1	15	7	69	77	7	43	4	222	0	0	1918	444	TR
114	2	2	0	4	1/	157	2	113	1/	406	12	5	30	0	1	30	524	2	30	10	33	12	15	7	1	155	0	0	1851	600	114
117	1	1	0	т Э	14	10	1	115	24	470	13	1	20	72	12	50	20	206	14	15	35	12	15	75	1	133	0	0	1001	170	117
	1	1	0	2	1	10	1	11	5	4/9	1	1	5	13	45	50	30	200	14	,	4	1	1	15	1	210	0	0	1025	1/0	102
AIL	0	0	0	-0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	4	0	0	0	1	0	0	5	0	0	12	9	AIL
BAS	0	0	0	-2	26	59	1	4	1	65	51	1	2	0	0	2	12	0	47	-0	0	2	15	0	0	111	0	0	478	342	BAS
BLS	1	1	0	1	4	31	1	39	4	231	3	1	4	0	1	43	132	1	9	5	69	7	5	5	0	51	0	0	672	187	BLS
MED	4	4	1	1	2	12	4	21	14	23	1	4	3	0	0	60	20	0	13	2	9	155	4	2	3	62	0	0	631	479	MED
NOS	0	0	0	-12	14	5	1	1	0	10	7	0	0	0	0	0	1	0	35	3	0	1	-62	0	0	53	0	0	42	12	NOS
AST	0	1	0	1	2	7	1	7	2	113	2	0	1	29	19	149	13	69	4	2	4	29	2	263	2	189	0	0	646	79	AST
NOA	2	2	1	1	1	5	4	9	6	9	0	1	1	0	0	27	7	0	8	1	3	141	2	1	19	81	0	0	322	260	NOA
EXC	2	2	0	-1	7	29	6	26	10	252	7	3	6	7	7	46	44	24	19	7	6	18	3	13	1	102	0	0	863	333	EXC
EU	3	5	0	-11	13	69	27	74	21	39	14	11	18	0	0	11	37	0	59	12	5	61	-2	1	2	162	0	0	1300	1122	EU
-	ME	MK	MT	NI	NO	PL	PT	RO	RS	RUF	SE	SI	SK	τı	ТМ	TR	UA	UZ	ATL	BAS	BLS	MED	NOS	AST	NOA	BIC	DMS	VOI	EXC	EU	-

Table C.5: 2007 country-to-country blame matrices for AOT40^{3m}_f. Units: ppb.h per 15% emis. red. of VOC. Emitters \rightarrow , Receptors \downarrow . (Based on HIRLAM meteorology.)

	AL	AM	AT	ΑZ	ΒA	BE	ΒG	ΒY	СН	CY	CZ	DE	DK	EE	ES	FI	FR	GΒ	GE	GR	HR	HU	IE	IS	IT	KG	KZT	LT	LU	LV	MD	
AL	32	0	18	2	8	8	12	4	8	0	17	103	4	0	39	1	61	42	2	34	1	14	2	0	190	0	0	1	1	1	1	AL
AM	0	45	1	22	0	1	1	2	1	0	2	13	1	0	3	1	6	7	19	1	1	2	0	0	6	0	2	1	0	0	0	AM
AT	0	0	101	1	1	21	2	4	27	0	32	269	4	0	28	1	87	60	1	2	1	12	2	0	137	0	0	1	2	1	1	AT
AZ	0	4	3	121	0	3	1	6	1	0	4	26	2	1	4	2	12	16	19	1	2	3	1	0	9	0	6	2	0	1	1	AZ
BA	2	0	19	1	9	11	4	4	10	0	22	123	4	0	44	1	63	45	1	6	1	17	2	0	183	0	0	1	1	1	1	BA
BE	0	0	10	0	0	141	1	4	3	0	17	294	12	0	16	1	159	177	0	1	1	3	7	0	10	0	0	2	3	1	0	BE
BG	3	1	13	3	3	7	46	7	5	0	19	86	5	0	22	2	38	40	3	14	2	15	2	0	61	0	1	2	1	1	3	BG
BY	0	0	5	3	0	6	1	19	2	0	11	57	5	1	8	2	24	30	2	1	1	4	2	0	13	0	2	4	0	2	1	BY
СН	0	0	20	0	1	20	1	2	104	0	12	228	3	0	45	1	148	64	0	1	1	5	3	0	213	0	-	1	2	1	0	СН
cv	3	3	0	11	3	5	12	8	201	10	11	58	1	1	18	2	20	28	15	30	2	0	1	0	51	0	2	2	0	1	2	cv
C7	0	0	40	1	1	20	12	7	12	10	110	270	7	0	10	1	29 72	20	13	1	- 1	14	2	0	52	0	2	2	1	1	- 1	C7
	0	0	10	1	1	20	1	1	14	0	20	410	11	0	10	1	116	122	1	1	1	14	5	0	55	0	0	2	2	1	1	
DE	0	0	19	0	0	39	1	4	14	0	29	410	70	1	19	1	110	152	0	1	1	5	5	0	20	0	0	2	3	1	0	
	0	0	3	0	0	21	0	4	1	0	0	122	12	1	9	3	03	214	0	0	2	2	9	0		0	0	3	1	2	0	
EE	0	0	1	1	0	5	0	3	1	0	3	40	9	6	4	11	18	45	1	0	2	1	2	0	4	0	1	2	0	2	0	EE
ES	0	0	5	0	1	8	1	1	3	0	5	49	2	0	240	0	72	40	0	2	0	2	2	0	40	0	0	0	0	0	0	ES
FI	0	0	1	0	0	2	0	1	0	0	1	14	3	1	2	4	6	13	0	0	1	0	1	0	1	0	0	0	0	0	0	FI
FR	0	0	11	0	1	32	1	3	10	0	11	160	6	0	56	1	210	111	0	2	1	3	4	0	68	0	0	1	2	1	0	FR
GB	0	0	1	0	0	9	0	2	1	0	3	67	7	0	4	1	32	217	0	0	1	1	8	0	6	0	0	1	0	1	0	GB
GE	0	5	3	35	0	2	2	4	1	0	4	24	2	0	4	1	11	14	51	2	1	3	1	0	10	0	3	1	0	1	1	GE
GL	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	-0	0	0	0	0	0	0	0	GL
GR	9	0	15	2	5	7	21	5	7	0	17	89	5	0	34	1	49	40	2	70	2	14	2	0	120	0	1	2	1	1	2	GR
HR	1	0	30	1	5	13	4	5	13	0	28	155	4	0	51	1	78	52	1	4	1	19	3	0	254	0	0	2	1	1	1	HR
ΗU	1	0	34	2	3	13	3	7	10	0	41	179	6	0	27	2	62	53	2	2	1	71	3	0	102	0	0	3	1	1	1	ΗU
IE	0	0	1	0	0	6	0	2	1	0	2	56	6	0	3	1	18	116	0	1	1	1	17	0	8	0	0	1	0	0	0	IE
IS	0	0	1	0	0	2	0	0	0	0	1	13	1	0	2	0	9	14	0	0	0	0	1	0	3	0	0	0	0	0	0	IS
IT	3	0	31	1	5	12	4	3	21	0	18	133	3	0	80	1	121	53	1	7	1	11	3	0	752	0	0	1	1	1	1	IT
KG	0	1	2	4	0	1	1	3	1	0	2	15	1	0	6	1	9	8	3	1	1	1	0	0	7	2	18	1	0	0	0	KG
K7T	0	1	2	5	0	2	1	6	1	0	3	23	2	1	5	2	11	16	3	1	2	2	1	0	8	0	11	2	0	1	1	K7T
11	0	0	2	1	0	10	1	8	2	0	10	76	13	1	7	2	31	52	1	1	2	3	2	0	12	0	1	12	0	3	1	IT
	0	0	12	-	0	62	1	2	-	0	22	272	- 15	0	10	2	150	111	-	1	1	5	4	0	17	0	0	2	20	1	1	
	0	0	12	1	0	02	1	5	1	0	22	212 ED	10	1	10	2	100	111	1	1	1	5 0	4	0	17	0	1	2	20	6	1	
	1	1	2	1	1	í c	1	5	1	0	14	52 71	10	1	10	4	23	44	1	1	1	2	2	0	26	0	1	4	0	1	7	
	1	1	0	2	1	0	7	1	4	0	14	100	5	1	12	2	51	41	1	10	2	0	2	0	174	0	2	2	1	1	1	
ME	8	0	17	2	0	9	1	4	8	0	18	108	4	0	31	1	57	40	1	12	1	14	2	0	1/4	0	0	1	1	1	1	IVIE
MK	9	0	14	1	3	(15	4	6	0	17	88	3	0	30	1	41	32	1	41	1	14	2	0	95	0	1	1	1	1	2	MK
MI	6	0	26	1	(10	8	3	11	0	17	121	3	0	112	1	116	50	1	24	2	12	3	0	645	0	0	1	1	1	1	MI
NL	0	0	6	0	0	54	0	4	2	0	14	303	18	0	12	1	108	216	0	0	1	2	8	0	6	0	0	2	2	1	0	NL
NO	0	0	1	0	0	4	0	1	1	0	1	21	4	0	2	1	12	38	0	0	2	0	2	0	3	0	0	0	0	0	0	NO
ΡL	0	0	16	1	1	16	1	9	5	0	34	166	15	1	14	2	56	75	1	1	2	11	3	0	34	0	1	3	1	1	1	ΡL
ΡT	0	0	4	0	1	7	1	1	2	0	3	37	1	0	113	0	62	40	0	1	0	2	2	0	16	0	0	0	0	0	0	РΤ
RO	1	1	13	4	2	7	10	7	6	0	21	89	6	1	18	2	37	38	4	6	1	20	2	0	49	0	1	2	1	1	3	RO
RS	2	0	21	2	6	9	6	4	8	0	26	124	5	0	31	1	52	43	2	6	1	26	2	0	107	0	0	2	1	1	2	RS
RUE	0	0	1	2	0	1	0	2	0	0	1	7	1	0	1	1	4	6	1	0	1	1	0	0	2	0	1	1	0	0	0	RUE
SE	0	0	1	0	0	4	0	1	1	0	2	31	9	0	3	1	15	40	0	0	2	0	2	0	3	0	0	1	0	0	0	SE
SI	0	0	49	1	2	16	2	5	15	0	28	175	3	0	44	1	81	54	1	2	1	15	3	0	350	0	0	1	1	1	1	SI
SK	1	0	31	2	2	15	2	9	8	0	51	166	8	0	22	2	58	55	2	2	1	37	3	0	90	0	0	3	1	1	1	SK
ТJ	0	1	1	4	0	1	0	2	1	0	2	13	1	0	5	1	7	8	2	1	1	1	0	0	6	1	13	1	0	0	0	ТJ
ТМ	0	2	4	13	0	3	1	7	2	0	5	31	3	1	8	3	16	20	8	1	3	3	1	0	13	0	14	2	0	1	1	тм
TR	1	3	5	9	1	3	6	5	2	0	7	37	3	0	10	1	18	20	10	9	1	5	1	0	23	0	2	1	0	1	1	TR
UA	0	1	7	9	1	6	3	9	3	0	12	61	5	1	9	2	27	37	6	2	2	7	2	0	20	0	3	2	0	1	2	UA
117	0	2	3	9	0	3	1	6	2	0		30	3	1	7	3	15	20	5	1	3	3	1	0	11	1	17	2	0	1	1	117
	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	1	20	0	0	0	0	0	0	0	0		0	0	0	0	ΔΤΙ
RAS	0	0	2	0	0	0	0	3	1	0	1	63	21	2	1	6	26	71	0	0	2	1	3	0	1	0	0	2	0	2	0	RAS
	0	1	2	6	0	3	2	2	1	0		10	21	2		1	20	10	6	0	- 1	2	1	0	-	0	1	1	0	2	1	DAJ
DL3	0	1	2	0	U	2	3	3	1	0	3 -	18	2	0	3	T	9	12	0	12	1	2	1	U	5	0	1	T	0	0	1	DLS
	2	Ű	5	1	2	3	3	2	3	0	5	28	1	0	21	0	26	14	1	12	0	3	1	U	(2	0	0	0	0	0	1	NCC
NUS	U	0	1	0	0	5	0	1	0	0	2	30	5	Ű	2	Ű	1/	65	0	0	0	0	2	Ű	2	0	0	Ű	0	U	0	NUS
AST	0	1	1	6	0	1	1	2	1	0	2	10	1	0	3	1	6	6	3	2	1	1	0	0	6	0	4	1	0	0	0	AST
NOA	1	0	3	0	1	2	2	1	2	0	3	17	1	0	20	0	17	8	0	6	0	2	0	0	35	0	0	0	0	0	0	NÖA
EXC	0	1	4	3	0	4	1	3	2	0	5	37	3	0	13	1	21	23	2	2	1	3	1	0	23	0	3	1	0	1	0	EXC
EU	1	0	13	1	1	16	3	4	7	0	16	126	7	0	52	2	77	75	1	4	1	7	3	0	90	0	0	2	1	1	1	EU
	AL	AM	AT	ΑZ	ΒA	ΒE	ΒG	ΒY	СН	CY	CZ	DE	DK	EE	ES	FI	FR	GΒ	GΕ	GR	HR	ΗU	IE	IS	IT	KG	KZT	LT	LU	LV	MD	

Table C.5 Cont.: 2007 country-to-country blame matrices for $AOT40_f^{3m}$. Units: ppb.h per 15% emis. red. of VOC. **Emitters** \rightarrow , **Receptors** \downarrow . (Based on HIRLAM meteorology.)

	ME	MK	MT	NL	NO	PL	РΤ	RO	RS	RUE	SE	SI	SK	ТJ	ТΜ	TR	UA	UZ	ATL	BAS	BLS	MED	NOS	AST	NOA	BIC	DMS	VOL	EXC	EU	
AL	11	13	0	11	5	27	5	25	39	18	3	4	6	0	0	5	12	0	0	0	0	6	1	0	1	254	0	0	795	632	AL
AM	0	0	0	2	1	8	1	4	1	34	1	0	1	0	0	8	6	0	0	0	0	0	0	2	0	52	0	0	206	63	AM
AT	0	0	0	24	5	49	5	10	3	13	3	11	8	0	0	2	8	0	0	0	0	1	2	0	0	175	0	0	938	871	AT
AZ	0	0	0	3	4	16	1	7	2	111	3	1	2	0	1	8	13	1	0	0	0	0	0	5	0	154	0	0	423	123	AZ
BA	3	1	0	14	5	37	6	17	17	17	3	4	8	0	0	3	10	0	0	0	0	3	1	0	0	207	0	0	722	636	BA
BE	0	0	0	105	8	35	4	4	1	14	7	2	3	0	0	0	6	0	1	1	0	0	9	0	0	217	0	0	1055	1015	BE
BG	2	4	0	9	6	44	4	58	16	48	5	2	8	0	0	9	30	0	0	0	0	2	1	0	0	202	0	0	649	504	BG
BY	0	0	0	7	4	45	2	5	2	47	5	1	3	0	0	2	13	0	0	1	0	0	1	0	0	100	0	0	341	243	BY
СН	0	0	0	20	4	23	6	5	2	8	3	4	3	0	0	1	-3	0	1	0	0	1	2	0	0	155	0	0	960	832	СН
CY	2	3	0	-0	5	32	3	25	13	85	4	2	5	0	0	171	32	0	0	0	1	- 6	- 1	3	1	316	0	0	729	365	CY
C7	0	0	0	26	6	105	4	0	3	10	6	5	13	0	n n	2	13	0	1	1	0	1	3	0	0	100	0	0	028	850	C7
DE	0	0	0	48	8	57	4	5	1	15	7	2	4	0	0	1	7	0	1	1	0	0	5	0	0	208	0	0	1002	947	DE
חג	0	0	0	36	21	36	3	3	1	22	28 28	0	י י	0	0	1	1	0	1	5	0	0	10	0	0	200	0	0	704	646	חא
FE	0	0	0	30 8	6	21	1	2	1	36	13	0	1	0	0	1	т Б	0	0	2	0	0	10	0	0	222	0	0	256	100	FF
	0	0	0	0	2	21	27	2	1	30	1	1	1	0	0	1	ງ ງ	0	1	2	0	2	1	0	0	174	0	0	230	199	EC
	0	0	0	9	ა ე	9	51	0	1	4	2	1	1	0	0	1	2	0	1	0	0	2	1	0	0	10	0	0	70	529	
ED	0	0	0	21	2	21	6	1	2	10	ر ۷	0 2	2	0	0	1	2	0	1	0	0	1	1	0	0	19	0	0	700	750	ED
	0	0	0	17	16	10	1	4	2	10	4	2	2	0	0	1	Э	0	1	1	0	1	4	0	0	100	0	0	109	206	
GB	0	0	0	11	10	10	1	2	0	10	5	1	1	0	0	0	12	0	1	1	0	0	4	0	0	123	0	0	430	390	GD
GE	0	0	0	3	3	10	1	1	2	13	2	1	2	0	0	1	13	0	0	0	0	0	0	2	0	95	0	0	317	117	GE
GL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	0	0	5	5	GL
GR	4	10	0	9	6	38	5	35	23	35	4	3	(0	0	12	22	0	0	0	0	5	1	0	1	258	0	0	739	591	GR
нк	2	1	0	1/	6	49	(17	14	18	4	9	9	0	0	3	12	0	1	0	0	4	2	0	0	241	0	0	896	810	нк
HU	1	1	0	16	6	85	5	22	15	26	5	6	21	0	0	3	17	0	0	1	0	1	2	0	0	214	0	0	860	/05	HU
IE	0	0	0	12	10	9	1	2	0	8	4	0	1	0	0	0	2	0	1	0	0	0	2	0	0	84	0	0	292	267	IE
IS	0	0	0	2	1	2	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-5	0	0	57	53	IS
IT	2	2	0	14	5	31	9	12	9	12	3	12	5	0	0	2	7	0	1	0	0	8	2	0	1	301	0	0	1395	1321	IT
KG	0	0	0	2	2	7	1	3	1	57	2	0	1	6	0	5	5	40	0	0	0	0	0	3	0	98	0	0	222	73	KG
KZT	0	0	0	3	4	14	1	4	1	124	3	0	1	0	0	4	12	1	0	0	0	0	0	1	0	134	0	0	285	110	KZT
LT	0	0	0	12	8	56	2	6	2	39	11	1	2	0	0	2	10	0	0	2	0	0	2	0	0	117	0	0	407	330	LT
LU	0	0	0	57	6	40	4	6	1	13	6	2	4	0	0	1	7	0	1	1	0	0	5	0	0	185	0	0	863	825	LU
LV	0	0	0	9	6	32	1	4	1	30	12	0	2	0	0	1	7	0	0	1	0	0	2	0	0	91	0	0	294	236	LV
MD	1	1	0	7	6	52	3	42	5	65	4	1	5	0	0	6	42	0	0	0	0	1	1	1	0	169	0	0	518	355	MD
ME	23	3	0	12	5	28	5	20	27	17	3	3	6	0	0	4	11	0	0	0	0	4	1	0	1	209	0	0	701	579	ME
MK	3	18	0	8	4	28	5	28	26	19	3	2	6	0	0	5	12	0	0	0	0	3	1	0	1	189	0	0	599	484	MK
ΜT	3	4	140	14	5	24	11	18	13	17	3	7	5	0	0	4	8	0	1	0	0	54	1	0	2	486	0	0	1460	1372	ΜT
NL	0	0	0	131	11	35	3	2	0	15	8	1	2	0	0	0	7	0	1	2	0	0	11	0	0	224	0	0	977	935	NL
NO	0	0	0	6	9	5	0	1	0	4	2	0	0	0	0	0	1	0	0	0	0	0	1	0	0	27	0	0	124	107	NO
PL	0	0	0	20	8	157	3	8	4	27	10	3	8	0	0	2	13	0	1	1	0	0	3	0	0	178	0	0	737	660	PL
ΡT	0	0	0	7	2	6	190	2	1	4	1	1	1	0	0	0	2	0	4	0	0	1	1	0	0	148	0	0	515	500	ΡT
RO	1	2	0	9	5	56	4	86	12	41	5	2	9	0	0	5	29	0	0	1	0	1	1	1	0	178	0	0	617	492	RO
RS	3	2	0	13	5	43	5	38	59	20	4	4	10	0	0	3	14	0	0	0	0	2	1	0	0	201	0	0	715	580	RS
RUE	0	0	0	1	1	5	0	1	0	53	1	0	0	0	0	1	5	0	0	0	0	0	0	0	0	31	0	0	104	36	RUE
SE	0	0	0	7	5	7	1	1	0	7	9	0	0	0	0	0	1	0	0	1	0	0	1	0	0	43	0	0	157	138	SE
SI	0	0	0	18	5	49	5	13	5	16	4	32	8	0	0	2	10	0	1	0	0	2	2	0	0	224	0	0	1021	955	SI
SK	1	1	0	18	6	124	5	15	9	29	5	6	27	0	0	2	16	0	0	1	0	1	2	0	0	198	0	0	835	745	SK
ТJ	0	0	0	2	2	6	1	2	1	55	1	0	1	15	1	4	5	32	0	0	0	0	0	4	0	95	0	0	204	63	ТJ
ТМ	0	0	0	4	5	17	2	7	2	159	5	1	2	1	2	10	13	5	0	0	0	0	1	3	0	247	0	0	402	152	ТМ
TR	1	1	0	4	3	23	2	16	5	65	3	1	3	0	0	67	23	0	0	0	0	1	1	2	0	136	0	0	404	201	TR
UA	0	0	0	7	6	47	2	16	3	102	4	1	4	0	0	4	73	0	0	0	0	0	1	1	0	159	0	0	512	286	UA
UZ	0	0	0	4	5	17	1	6	1	141	4	1	2	5	1	7	12	25	0	0	0	0	1	3	0	227	0	0	387	143	UZ
ATL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	9	9	ATL
BAS	0	0	0	13	9	25	1	2	1	22	18	0	1	0	0	1	4	0	0	3	0	0	3	0	0	102	0	0	326	283	BAS
BLS	0	0	0	2	2	13	1	8	1	52	2	0	1	0	0	6	20	0	0	0	0	0	0	1	0	65	0	0	196	92	BLS
MED	1	1	0	3	2	10	2	7	4	10	1	2	2	0	0	9	5	0	0	0	0	4	0	0	0	95	0	0	270	228	MED
NOS	0	0	0	9	7	5	1	1	0	4	3	0	0	0	0	0	1	0	0	0	0	0	3	0	0	47	0	0	164	150	NOS
AST	0	0	0	1	1	6	1	3	1	36	1	0	1	1	0	14	5	3	0	0	0	0	0	9	0	65	0	0	136	55	AST
NOA	0	1	0	2	1	6	2	4	2	6	1	1	1	0	0	4	3	0	0	0	0	3	0	0	1	80	0	0	156	133	NOA
EXC	0	0	0	5	3	15	3	5	2	56	3	1	2	0	0	4	9	1	0	0	0	0	1	1	0	85	0	0	268	176	EXC
EU	0	1	0	19	6	38	11	12	4	16	6	3	4	0	0	2	8	0	1	1	0	1	2	0	0	161	0	0	642	588	EU
-	ME	MK	МT	NL	NO	PL	PT	RO	RS	RUE	SE	SI	SK	тJ	тм	TR	UA	117	ATI	BAS	BIS	MFD	NOS	AST	NOA	BIC	DMS	VOI	FXC	FU	-

Table C.6: 2007 country-to-country blame matrices for **SOMO35**. Units: ppb.d per 15% emis. red. of NO_x. **Emitters** \rightarrow , **Receptors** \downarrow . (Based on HIRLAM meteorology.)

AL AM AT AZ BA BE BG	31 0 0 1 0 2 0	0 23 0 7 0 0	5 1 12 1	0 48 0	9 0 1	-0 0 -2	10 1	1 1	1 0	0 0	1 0	4	0	0	10	0	10	1	0	17	0	5	0	0	42	0	0	0	0	0	0	AL
AM AT AZ BA BE BG	0 0 1 0 2 0	23 0 7 0 0	1 12 1	48 0	0 1	0	1	1	0	0	0	1	~	~	~									-								
AT AZ BA BE BG	0 0 1 0 2 0	0 7 0 0	12 1	0	1	-2					•	т	0	0	2	0	2	1	12	1	0	0	0	0	3	0	4	0	0	0	0	AM
AZ BA BE BG	0 1 0 2 0	7 0 0	1	02		-2	T	1	5	0	3	13	-0	0	12	0	23	-2	0	1	0	7	1	0	25	0	0	0	0	0	0	AT
BA BE BG	1 0 2 0	0 0		93	0	0	1	1	0	0	0	2	0	0	2	1	2	2	11	1	0	1	0	0	2	0	12	0	0	0	0	AZ
BE BG	0 2 0	0	11	0	38	-0	4	1	2	0	4	7	0	0	14	0	14	1	0	4	0	16	0	0	45	0	0	0	0	0	0	BA
BG	2 0		1	0	0	-73	0	0	1	0	0	-2	1	0	7	0	26	-13	0	0	0	1	3	0	1	0	0	0	0	0	0	BE
	0	0	5	0	3	0	60	2	1	0	3	6	0	0	7	1	7	2	0	14	0	8	0	0	12	0	1	1	0	0	3	BG
ΒY	-	0	1	0	0	0	1	26	0	0	2	7	1	1	3	3	5	3	0	1	1	2	1	0	3	0	1	7	0	2	1	ΒY
СН	0	0	4	0	1	-2	0	0	19	0	1	5	-0	0	19	0	73	0	0	1	0	1	1	0	21	0	0	0	0	0	0	СН
ĊY	1	1	1	1	1	0	4	1	0	46	0	2	0	0	5	0	4	2	1	16	0	1	0	0	9	0	1	0	0	0	0	CY
C7	0	0	12	0	1	-2	1	1	2	0	3	15	0	0	8	0	20	-0	0	1	0	7	1	0	8	0	0	0	0	0	0	C7
DE	0	0		0	0	-6	0	1	2	0	1	9	-0	0	8	0	29	-4	0	0	0	1	2	0	3	0	0	1	0	0	0	DE
DK	0	0	0	0	0	-1	0	2	0	0	-0	2	-13	0	2	1	-5	1	0	0	1	0	3	1	1	0	0	2	0	1	0	DK
FF	0	0	0	0	0	-1	0	5	0	0	-0	2	-13	4	1	6	3	3	0	0	2	0	1	0	1	0	0	2	0	4	0	FF
FS	0	0	1	0	0	-1	0	0	0	0	0	_0	_0	0	112	0	17	-0	0	1	0	0	1	0	6	0	0	0	0	0	0	FS
EJ FI	0	0	0	0	0	-0	0	1	0	0	0	-0	-0	1	112	1	2	-0	0	0	2	0	1	0	0	0	0	1	0	1	0	EI
FR	0	0	1	0	0	1	0	0	1	0	0	0	0	0	22	4 0	ے 1	7	0	1	2 0	1	2	0	7	0	0	0	0	0	0	FR
	0	0	1	0	0	-4	0	0	1	0	0	1	0	0	22	0	01 E	-1	0	1	0	1	2	0	1	0	0	0	0	0	0	
GD	0	15	1	47	0	-1	0	1	0	0	-0	-1	0	0	2	0	2	-51	- U	0	0	1	4	0	1	0	5	0	0	0	1	GD
GE	0	15	1	47	0	0	2	1	0	0	1	1	0	0	3	0	3 1	2	21	2	0	1	0	0	о О	0	5	0	0	0	1	GE
GL	0	0	0	0	0	-0	0	0	0	0	0	0	-0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	GL
GR	0	0	3	0	3	0	33	1	1	0	1	4	0	0	9	0	8	2	0	89	0	4	0	0	25	0	1	0	0	0	1	GR
нк	1	0	16	0	17	-0	3	1	2	0	4	9	0	0	13	0	1/	1	0	3	0	20	1	0	53	0	0	0	0	0	0	нк
HU	0	0	16	0	5	-0	2	2	2	0	5	11	-0	0	8	0	13	1	0	2	0	44	1	0	18	0	0	1	0	0	1	HU
IE	0	0	0	0	0	-1	0	0	0	0	-0	-0	0	0	2	0	2	-0	0	0	0	0	-5	0	1	0	0	0	0	0	0	IE
IS	0	0	0	0	0	0	0	0	0	0	-0	1	0	0	1	0	2	5	0	0	0	0	1	2	0	0	0	0	0	0	0	IS
IT	1	0	6	0	3	-0	2	0	3	0	1	2	-0	0	22	0	33	1	0	4	0	3	1	0	75	0	0	0	0	0	0	IT
KG	0	1	0	1	0	0	0	0	0	0	0	2	0	0	3	0	3	2	0	1	0	0	0	0	2	23	63	0	0	0	0	KG
KZT	0	1	1	2	0	0	0	1	0	0	1	2	0	0	2	1	2	3	1	0	1	1	0	0	1	1	57	0	0	0	0	KZT
LT	0	0	1	0	0	-0	0	11	0	0	1	7	2	1	3	3	5	3	0	0	1	1	1	0	2	0	1	15	0	3	0	LT
LU	0	0	3	0	0	-13	0	0	1	0	2	7	0	0	11	0	59	-5	0	0	0	1	2	0	2	0	0	0	-11	0	0	LU
LV	0	0	1	0	0	-1	0	9	0	0	1	4	2	2	2	4	3	3	0	0	1	1	1	0	1	0	1	9	0	6	0	LV
MD	0	1	3	1	1	0	5	6	1	0	4	8	0	0	4	1	6	3	1	3	1	6	0	0	5	0	2	1	0	1	19	MD
ME	6	0	7	0	20	-0	8	1	1	0	2	6	-0	0	13	0	12	2	0	10	0	8	0	0	43	0	0	0	0	0	0	ME
MK	9	0	5	0	5	-0	30	1	1	0	2	5	0	0	9	0	8	1	0	19	0	7	0	0	25	0	0	0	0	0	1	MK
ΜT	1	0	3	0	2	0	2	0	1	0	1	3	0	0	26	0	24	1	0	8	0	1	0	0	63	0	0	0	0	0	0	MT
NL	0	0	1	0	0	-16	0	1	0	0	-0	1	1	0	4	0	10	-17	0	0	0	0	3	0	1	0	0	1	0	0	0	NL
NO	0	0	0	0	0	-0	0	0	0	0	0	1	0	0	1	1	2	-0	0	0	1	0	1	0	1	0	0	0	0	0	0	NO
ΡL	0	0	3	0	1	-1	1	5	1	0	4	13	0	0	5	1	9	1	0	1	1	4	1	0	5	0	0	2	0	1	0	ΡL
PΤ	0	0	0	0	0	-0	0	0	0	0	0	-0	0	0	57	0	9	2	0	0	0	0	1	0	3	0	0	0	-0	0	0	PΤ
RO	1	0	6	0	3	0	11	3	1	0	4	8	0	0	6	1	7	2	0	4	0	16	0	0	9	0	1	1	0	0	3	RO
RS	3	0	9	0	13	0	13	1	2	0	4	9	0	0	10	0	11	2	0	6	0	18	0	0	24	0	0	0	0	0	1	RS
RUE	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	1	1	0	0	0	0	0	0	0	0	4	0	0	0	0	RUE
SE	0	0	0	0	0	-0	0	1	0	0	0	3	1	1	1	2	3	3	0	0	1	0	1	0	0	0	0	1	0	1	0	SE
SI	0	0	19	0	3	-1	2	1	3	0	3	6	0	0	12	0	17	-1	0	2	0	13	1	0	58	0	0	0	0	0	0	SI
SK	0	0	12	0	2	-1	1	3	1	0	6	10	-0	0	7	0	12	1	0	1	0	32	1	0	14	0	0	1	0	0	1	SK
ТJ	0	1	0	1	0	0	0	0	0	0	0	1	0	0	2	0	2	1	0	0	0	0	0	0	2	4	29	0	0	0	0	ТJ
ТМ	0	3	1	7	0	0	1	1	0	0	1	3	0	0	3	1	4	3	2	1	1	1	0	0	3	0	42	0	0	0	0	ТМ
TR	0	4	1	4	1	0	5	1	0	1	1	2	0	0	4	0	4	2	3	7	0	2	0	0	6	0	1	0	0	0	1	TR
UA	0	1	2	1	1	0	2	8	1	0	3	7	0	0	3	2	5	3	1	1	1	5	0	0	3	0	3	2	0	1	3	UA
υz	0	2	1	4	0	0	1	1	0	0	1	3	0	0	3	1	3	4	1	1	1	1	0	0	2	2	65	0	0	0	0	UZ
ATL	0	0	0	0	0	-0	0	0	0	0	-0	-0	0	0	1	0	2	1	0	0	0	0	1	0	0	0	0	0	0	0	0	ATL
BAS	0	0	0	0	0	-1	0	3	0	0	0	4	-1	2	2	5	4	4	0	0	2	0	2	0	1	0	0	3	0	2	0	BAS
BLS	0	3	1	5	0	0	6	4	0	0	2	4	0	0	3	1	4	3	9	3	1	3	0	0	2	0	3	1	0	0	3	BLS
MED	1	0	3	0	3	-0	7	0	1	2	1	2	0	0 0	24	0	25	1	0	22	0	2	0	0	44	0 0	0	0	0 0	0 0	0 0	MED
NOS	0	0	0	0	0	-3	0	1	0	0	-0	-3	-1	0 0	2	1	4	-31	0	0	1	0	3	1	1	0 0	0 0	1	ñ	n	0	NOS
AST	0	1	0 0	6	0 0	0	1	1	0 0	1	ñ	1	0	0 0	2	0	2	1	1	1	0	0	0	0	2	1	20	0	0 0	0 0	ñ	AST
NOA	1	0	2	0	1	0	4	0	1	0	1	3	0	0	21	0	13	2	0	14	0	1	0	0	21	0	0	n	ñ	n	0	NOA
FXC	n.	1	1	2	n	-0	1	2	n	n	1	2	n	n	5	1	-0	1	1	1	n	1	0	0 0	3	ñ	12	1	n	n	n	FXC
FII	n	0	- २	ے م	1	-2	4	1	1	n	1	4	n	n	22	1	21	-3	0	4	1	4	1	n	11	n		1	n	n	n	FII
-0	AL	AM	AT	ΑZ	BA	BE	BG.	BY	СН	CY	7	DE	DK	FF	FS	FI	FR	GB	GF	GR	HR	ни	IE	IS	IT	кĞ	к7т	іŤ	ιŭ	īv	мΠ	-0

Table C.6 Cont.: 2007 country-to-country blame matrices for **SOMO35**. Units: ppb.d per 15% emis. red. of NO_x. **Emitters** \rightarrow , **Receptors** \downarrow . (Based on HIRLAM meteorology.)

	ME	ΜK	МΤ	NL	NO	ΡL	PΤ	RO	RS	RUE	SE	SI	SK	ТJ	ТΜ	ΤR	UA	UZ	ATL	BAS	BLS	MED	NOS	AST	NOA	BIC	DMS	VOL	EXC	EU	
AL	13	5	0	-0	1	3	1	10	28	4	0	1	1	0	0	5	4	0	4	0	1	42	0	0	2	31	0	0	226	125	AL
AM	0	0	0	0	0	1	0	2	0	24	0	0	0	0	3	47	4	2	2	0	2	5	1	20	1	28	0	0	187	18	АМ
AT	0	0	0	-3	1	3	1	4	2	3	0	8	3	0	0	1	3	0	5	0	0	6	-2	0	0	26	0	0	129	111	AT
۸7	0	0	0	0	1	2	0	ว	0	62	0	0	0	0	6	25	5	1	2	1	2	4	1	23	0	20	ů.	0	250	22	Δ7
	6	1	0	0	1	4	1	11	20	02	0	2	4	0	0	20	5	-	-	1	1	10	-	25	1	29	0	0	200	145	
	0	1	0	-0	1	4	1	11	20	4	1	2	4	0	0	2	5 1	0	5 11	1	1	19	0	0	1	29	0	0	221	145	
BE	0	0	0	-24	1	2	1	1	0	3	1	0	1	0	0	0	1	0	11	1	0	1	-23	0	0	22	0	0	-58	-66	BE
BG	2	3	0	0	1	8	1	44	16	17	1	1	3	0	0	7	19	0	3	1	8	12	1	0	1	27	0	0	261	183	BG
ΒY	0	0	0	0	2	19	0	4	1	31	3	0	1	0	0	2	18	0	4	4	1	1	1	0	0	18	0	0	153	68	ΒY
CH	0	0	0	-3	1	1	1	1	1	1	0	1	0	0	0	1	0	0	7	0	0	6	-2	0	0	28	0	0	152	127	СН
CY	0	1	0	0	1	2	0	4	2	14	0	0	0	0	0	138	6	0	3	0	4	74	1	7	2	35	0	0	270	100	CY
CZ	0	0	0	-3	1	4	1	4	1	4	1	2	6	0	0	1	5	0	6	1	0	3	-1	0	0	21	0	0	107	89	CZ
DE	0	0	0	-8	1	5	1	2	1	3	1	0	1	0	0	0	2	0	9	-1	0	2	-6	0	0	23	0	0	63	51	DE
DK	0	0	0	-3	4	5	0	1	0	7	5	0	0	0	0	0	2	0	12	-9	0	1	-10	0	0	25	0	0	29	13	DK
FF	0	0	0	_0	ז	7	0	1	0 0	21	7	0	0 0	0	0	1	5	0		Q	0	1	20	0	0	17	0 0	0	87	48	FF
	0	0	0	-0	0	0	16	0	0	21	0	0	0	0	0	0	0	0	16	0	0	0	0	0	1	22	0	0	157	154	
	0	0	0	-0	0	0	10	0	0	0	0	0	0	0	0	0	1	0	10	-0	0	9	-0	0	1	11	0	0	107	104	
FI	0	0	0	0	2	2	0	0	0	8	4	0	0	0	0	0	1	0	4	3	0	0	1	0	0	11	0	0	39	24	FI
FR	0	0	0	-4	1	0	2	1	1	1	0	0	0	0	0	0	0	0	13	0	0	5	-5	0	0	25	0	0	111	105	FR
GB	0	0	0	-3	2	0	0	1	0	2	1	0	0	0	0	0	1	0	14	0	0	1	-6	0	0	24	0	0	-33	-42	GB
GE	0	0	0	0	1	3	0	4	1	61	0	0	0	0	3	41	9	2	2	1	8	5	1	13	1	30	0	0	267	28	GE
GL	0	0	0	-0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	10	0	0	5	3	GL
GR	2	7	0	0	1	4	1	14	11	9	0	1	1	0	0	11	9	0	3	1	4	44	1	0	2	31	0	0	263	200	GR
HR	2	1	0	-1	1	4	1	10	12	4	0	8	3	0	0	2	5	0	5	0	1	22	0	0	1	25	0	0	213	165	HR
HU	1	0	0	-1	1	6	1	17	11	6	1	5	11	0	0	2	11	0	5	-0	0	7	-0	0	0	23	0	0	203	161	HU
IE	0	0	0	-2	2	1	0	0	0	2	1	0	0	0	0	0	1	0	16	0	0	1	-2	0	0	25	0	0	6	-0	IE
IS	0	0	0	0	1	-0	0	0	0	1	1	0	0	0	0	0	0	0	9	0	0	0	1	0	0	19	0	0	15	10	IS
іт	1	1	0	1	1	-0	1	3	3	2	0	3	1	0	0	1	1	0	6	0	0	21	0	0	1	20	0	0	175	158	іт
KC	0	0	0	-1	1	1	0	1	0	10	0	0	0	20	4	6	1	60	1	0	0	21	-0	22	0	29	0	0	217	17	KC
	0	0	0	0	1	1	0	1	0	10	1	0	0	20	4	0	1	00	1	1	0	2	1	22	0	39	0	0	217	17	
NZ I	0	0	0	0	1	3	0	1	0	85	1	0	0	1	2	4	5	4	2	1	0	1	1	5	0	20	0	0	189	23	κ <u>Ζ</u> Ι
LI	0	0	0	0	3	18	0	3	0	20	5	0	1	0	0	1	8	0	6	8	0	1	2	0	0	19	0	0	124	76	LI
LU	0	0	0	-10	1	1	1	1	0	2	1	0	1	0	0	0	1	0	10	0	0	2	-5	0	0	22	0	0	64	56	LU
LV	0	0	0	-0	3	10	0	2	0	22	6	0	1	0	0	1	7	0	6	10	0	1	2	0	0	18	0	0	105	59	LV
MD	0	0	0	0	2	18	0	45	3	27	1	1	4	0	0	5	53	0	4	2	6	3	1	1	0	24	0	0	241	120	MD
ME	31	2	0	-0	1	3	1	10	31	4	0	1	2	0	0	4	5	0	4	0	1	25	1	0	1	32	0	0	238	130	ME
MK	4	22	0	-0	1	4	1	17	33	6	0	1	2	0	0	5	7	0	3	0	2	18	0	0	1	30	0	0	236	139	MK
MT	1	1	-60	-0	1	0	2	2	2	2	0	1	0	0	0	2	1	0	7	0	0	3	1	0	3	34	0	0	91	77	MT
NL	0	0	0	-60	2	1	1	1	0	4	1	0	0	0	0	0	2	0	11	1	0	1	-40	0	0	23	0	0	-56	-66	NL
NO	0	0	0	-1	5	1	0	0	0	3	3	0	0	0	0	0	0	0	7	1	0	0	-0	0	0	18	0	0	23	12	NO
PI	0	0	0	-1	2	25	1	4	1	9	3	1	3	0	0	1	9	0	6	2	0	2	0	0	0	20	0	0	117	86	PI
PT	0	0	0	_0	0	_0	33	0	0	0	0	0	0	0	0	0	0	0	20	0	0	3	0	0	0	34	0	0	108	105	PT
	1	1	0	-0	1	14	1	77	0	15	1	1	6	0	0	5	25	0	25	1	4	6	1	0	1	25	0	0	240	176	
	-	1	0	0	1	14	1	21	9	15	1	1	0	0	0	5 2	25	0	4	1	4	11	1	0	1	25	0	0	240	150	
RS	0	2	0	0	1	0	1	31	52	0	1	2	4	0	0	3	9	0	4	1	1	11	1	0	1	21	0	0	251	152	K3
RUE	0	0	0	0	1	1	0	1	0	39	1	0	0	0	0	1	3	0	1	1	0	0	0	0	0		0	0	01	10	RUE
SE	0	0	0	-0	4	2	0	0	0	6	6	0	0	0	0	0	1	0	(3	0	0	0	0	0	17	0	0	39	25	SE
SI	1	0	0	-1	1	4	1	7	4	3	0	19	3	0	0	1	4	0	5	0	0	16	-1	0	1	25	0	0	184	163	SI
SK	1	0	0	-1	1	8	1	10	5	6	1	4	22	0	0	2	12	0	5	-0	0	5	-1	0	0	22	0	0	177	142	SK
ТJ	0	0	0	0	0	1	0	1	0	12	0	0	0	56	6	5	1	59	1	0	0	1	1	32	0	36	0	0	188	12	ТJ
ТΜ	0	0	0	0	1	2	0	2	1	61	1	0	0	2	31	14	4	34	3	1	1	2	1	23	0	44	0	0	233	28	ТМ
TR	0	1	0	0	1	4	0	7	2	28	0	0	1	0	0	108	12	0	2	1	9	15	1	8	1	35	0	0	219	49	TR
UA	0	0	0	0	2	17	0	13	1	47	2	0	3	0	0	4	55	0	4	2	4	2	2	1	0	21	0	0	203	74	UA
UZ	0	0	0	0	1	3	0	2	0	67	1	0	0	7	9	9	4	41	3	1	1	2	2	14	0	40	0	0	243	28	UZ
ATL	0	0	0	-0	1	-0	0	0	0	1	0	0	0	0	0	0	0	0	15	0	0	0	0	0	0	19	0	0	11	7	ATL
RAS	0	0	0	-1	5	8	0	1	0	13	8	0	0	0	0	1	3	0	9	-3	0	1	-0	0	0	23	0	0	71	43	RAS
DIC	0	0	0	0	2	10	0	15	1	102	1	0	1	0	1	16	10	1	1	2	12	6	1	° 2	0	20	0	0	265	62	DIC
DL3	1	1	1	0	4	10	0	10	۷ T	702 201	U T	1	1	0	∧ T	74	49	U T	4 7	2	43 2	0 70	1	4	0	20 2⊏	0	0	200	142	
	1 A	1	1	-0	1	1	2	5	4	0	0	1	1	U	0	24	4	0	1	0	3	18	0	1	2	35	U	U	192	143	IVIED
1105	0	U	0	-5	5	-0	0	0	0	5	2	0	0	0	0	U	1	0	23	-1	0	1	-30	0	U	30	U	U	-12	-20	NUS
AST	0	0	0	0	0	1	0	1	0	26	0	0	0	3	4	24	3	9	1	0	1	6	1	44	0	33	0	0	117	16	AST
NOA	1	1	1	0	0	1	1	2	2	3	0	0	0	0	0	9	2	0	4	0	1	54	1	0	10	51	0	0	109	88	NOA
EXC	0	0	0	-0	1	3	1	3	1	35	1	0	1	1	1	6	5	3	3	1	1	3	0	2	0	16	0	0	104	32	EXC
EU	0	0	0	-2	2	5	3	7	2	6	2	1	2	0	0	2	4	0	9	1	1	7	-2	0	0	24	0	0	110	89	EU
	MF	MK	ΜТ	NI	NO	ΡI	ΡТ	RO	RS	RUE	SE	SL	SK	ТΙ	ΤМ	TR	IJΑ	U7	ATI	BAS	BLS	MFD	NOS	AST	NOA	BIC	DMS	VOL	FXC	FU	

Table C.7: 2007 country-to-country blame matrices for **SOMO35**. Units: ppb.d per 15% emis. red. of VOC. **Emitters** \rightarrow , **Receptors** \downarrow . (Based on HIRLAM meteorology.)

	AL	AM	AT	ΑZ	ΒA	BE	ΒG	ΒY	СН	CY	CZ	DE	DK	EE	ES	FI	FR	GΒ	GE	GR	HR	ΗU	IE	IS	IT	KG	KZT	LT	LU	LV	MD	
AL	5	0	3	0	1	1	2	1	1	0	3	15	1	0	8	0	11	6	0	7	0	2	0	0	31	0	0	0	0	0	0	AL
AM	0	12	0	7	0	0	0	1	0	0	1	3	0	0	1	0	2	2	6	0	0	0	0	0	2	0	0	0	0	0	0	AM
AT	0	0	15	0	0	3	0	1	5	0	6	47	1	0	5	0	16	8	0	0	0	2	0	0	23	0	0	0	0	0	0	AT
AZ	0	3	1	24	0	0	0	1	0	0	1	5	0	0	1	0	2	3	9	0	0	1	0	0	2	0	1	0	0	0	0	AZ
RA	1	0	4	0	2	1	1	1	2	0	4	20	1	0	8	0	12	6	0	1	0	3	0	0	30	0	0	0	0	0	0	RA
BE	0	0	2	0	0	16	0	0	1	0	2	37	1	0	3	0	28	25	0	0	0	1	1	0	2	0	0 0	0	0	0 0	0	RF
	1	0	2	0	1	10	0	1	1	0	2	10	1	0	1	0	20	2J E	0	2	0	2	0	0	11	0	0	0	0	0	1	
DU	1	0		0	1	1	9	1	1	0	3	12	1	0	4	0		5	0	5	0	- 1	0	0	11	0	0	1	0	0	1	DG
BY	0	0	1	0	0	1	0	3	0	0	2	10	1	0	1	0	4	0	0	0	0	1	0	0	3	0	0	1	0	0	0	BY
СН	0	0	4	0	0	3	0	0	15	0	2	40	0	0	(0	26	9	0	0	0	1	0	0	37	0	0	0	0	0	0	СН
CY	0	1	2	1	0	1	1	1	1	1	2	9	1	0	4	0	5	4	2	5	0	1	0	0	10	0	0	0	0	0	0	CY
CZ	0	0	6	0	0	3	0	1	2	0	15	42	1	0	3	0	13	10	0	0	0	2	0	0	9	0	0	0	0	0	0	CZ
DE	0	0	3	0	0	5	0	1	2	0	4	54	1	0	3	0	19	17	0	0	0	1	1	0	5	0	0	0	0	0	0	DE
DK	0	0	1	0	0	2	0	1	0	0	1	14	7	0	1	0	7	22	0	0	0	0	1	0	1	0	0	0	0	0	0	DK
EE	0	0	0	0	0	1	0	1	0	0	1	7	1	1	1	2	4	7	0	0	0	0	0	0	1	0	0	0	0	0	0	EE
ES	0	0	1	0	0	1	0	0	1	0	1	9	0	0	39	0	15	7	0	0	0	0	0	0	7	0	0	0	0	0	0	ES
FI	0	0	0	0	0	0	0	0	0	0	0	3	1	0	0	1	1	3	0	0	0	0	0	0	0	0	0	0	0	0	0	FI
FR	0	0	2	0	0	5	0	0	2	0	2	27	1	0	9	0	36	17	0	0	0	1	1	0	12	0	0	0	0	0	0	FR
GR	0	0	0	0	0	1	0	0	0	0	1	11	1	0	1	0	5	28	0	0	0	0	1	0	1	0	0 0	0	0	0	0	GR
GD CE	0	2	1	0	0	0	0	1	0	0	1	11	0	0	1	0	ך ר	20	10	1	0	1	0	0	2	0	1	0	0	0	0	CE
	0	2	1	0	0	0	0	1	0	0	1	1	0	0	1	0	1	1	10	1	0	1	0	0	0	0	1	0	0	0	0	
GL	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	-0	0	0	0	0	0	0	0	GL
GR	2	0	2	0	1	1	4	1	1	0	2	13	1	0	6	0	9	5	0	13	0	2	0	0	19	0	0	0	0	0	0	GR
HR	0	0	5	0	1	2	1	1	2	0	5	24	1	0	8	0	13	7	0	1	0	3	0	0	34	0	0	0	0	0	0	HR
ΗU	0	0	6	0	1	2	1	1	1	0	6	26	1	0	5	0	10	7	0	1	0	11	0	0	15	0	0	0	0	0	0	ΗU
IE	0	0	0	0	0	1	0	0	0	0	1	9	1	0	1	0	4	16	0	0	0	0	2	0	1	0	0	0	0	0	0	IE
IS	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	1	2	0	0	0	0	0	-0	1	0	0	0	0	0	0	IS
IT	0	0	5	0	1	2	1	1	3	0	3	22	1	0	12	0	19	7	0	2	0	2	0	0	107	0	0	0	0	0	0	IT
KG	0	0	0	1	0	0	0	0	0	0	0	2	0	0	1	0	1	1	0	0	0	0	0	0	1	1	2	0	0	0	0	KG
КZТ	0	0	0	1	0	0	0	1	0	0	0	3	0	0	1	0	2	2	1	0	0	0	0	0	1	0	2	0	0	0	0	КZТ
LT	0	0	1	0	0	2	0	1	0	0	2	12	2	0	1	1	6	8	0	0	0	1	0	0	2	0	0	1	0	0	0	LT
τu	0	0	2	0	0	9	0	0	1	0	2	40	1	0	5	0	30	18	0	0	0	1	1	0	3	0	0	0	2	0	0	τu
11/	0	0	0	0	0	1	0	1	0	0	1	10	1	0	1	1	5	7	0	0	0	0	0	0	2	0	0 0	1	0	1	0	11/
MD	0	0	1	1	0	1	1	1	1	0	2	10	1	0	2	0	5	5	1	1	0	1	0	0	5	0	0	0	0	0	1	
ME	2	0	2	0	1	1	1	1	1	0	2	16	1	0	0	0	11	6	۰ ۱	2	0	2	0	0	- Jo	0	0	0	0	0	0	ME
	2	0	ა ე	0	1	1	2	1	1	0	ა ი	10	1	0	6	0	11	5	0	0	0	2	0	0	17	0	0	0	0	0	0	
	2	0	2	0	1	1	3	1	1	0	2	12	1	0	0	0	0	5	0	9	0	2	0	0	17	0	0	0	0	0	0	
	1	0	4	0	1	2	1	1	2	0	3	19	1	0	21	0	21	8	0	3	0	2	0	0	85	0	0	0	0	0	0	
NL	0	0	1	0	0	(0	1	0	0	2	35	2	0	2	0	17	31	0	0	0	0	1	0	1	0	0	0	0	0	0	NL
NO	0	0	0	0	0	1	0	0	0	0	0	4	1	0	1	0	3	6	0	0	0	0	0	0	1	0	0	0	0	0	0	NO
PL	0	0	2	0	0	2	0	1	1	0	4	23	2	0	2	0	9	10	0	0	0	2	0	0	5	0	0	0	0	0	0	PL
PΤ	0	0	1	0	0	1	0	0	0	0	1	7	0	0	25	0	12	6	0	0	0	0	0	0	3	0	0	0	0	0	0	РТ
RO	0	0	2	0	1	1	2	1	1	0	3	14	1	0	4	0	7	5	0	1	0	3	0	0	10	0	0	0	0	0	1	RO
RS	1	0	3	0	1	1	2	1	1	0	4	18	1	0	5	0	9	6	0	2	0	4	0	0	17	0	0	0	0	0	0	RS
RUE	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	RUE
SE	0	0	0	0	0	1	0	0	0	0	0	5	1	0	1	0	3	7	0	0	0	0	0	0	1	0	0	0	0	0	0	SE
SI	0	0	9	0	0	2	0	1	3	0	4	29	1	0	8	0	14	8	0	1	0	3	0	0	49	0	0	0	0	0	0	SI
SK	0	0	5	0	0	2	0	1	1	0	8	27	1	0	3	0	10	8	0	1	0	6	0	0	12	0	0	0	0	0	0	SK
ТJ	0	0	0	1	0	0	0	0	0	0	0	1	0	0	1	0	1	1	0	0	0	0	0	0	1	0	1	0	0	0	0	ТJ
тм	0	1	1	2	0	0	0	1	0	0	1	5	0	0	1	0	2	3	2	0	0	0	0	0	2	0	2	0	0	0	0	тм
TR	0	1	1	2	0	1	1	1	0	0	1	6	0	0	2	0	4	3	2	2	0	1	0	0	5	0	0	0	0	0	0	TR
114	0	0	1	1	0	1	0	1	0	0	2	10	1	0	1	0	4	5	1	0	0	1	0	0	3	0	1	0	0	0	0	114
	0	0	1	1	0	0	0	1	0	0	1	10	0	0	1	0	т 2	2	1	0	0	0	0	0	2	0	2	0	0	0	0	117
	0	0	1	1	0	0	0	1	0	0	1	4	0	0	1	0	2	г	1	0	0	0	0	0	1	0	0	0	0	0	0	
AIL	0	0	1	0	0	0	0	1	0	0	1	12	0	0	1	1	3	10	0	0	0	0	1	-0	1	0	0	1	0	0	0	AIL
BAS	0	0	1	0	0	2	0	1	0	0	1	13	4	0	1	1	0	13	0	0	0	0	1	0	1	0	0	1	0	0	0	BAS
BLS	0	1	1	3	0	1	2	2	1	0	2	12	1	0	2	1	6	7	4	2	0	2	0	0	5	0	1	1	0	0	1	BLS
MED	1	0	4	0	1	2	2	1	2	0	3	19	1	0	21	0	21	8	1	7	0	2	0	0	51	0	0	0	0	0	0	MED
NOS	0	0	0	0	0	2	0	1	0	0	1	14	2	0	1	0	9	33	0	0	0	0	1	0	1	0	0	0	0	0	0	NOS
AST	0	0	0	2	0	0	0	1	0	0	0	2	0	0	1	0	1	1	1	0	0	0	0	0	2	0	1	0	0	0	0	AST
NOA	1	0	2	0	1	1	1	1	1	0	1	9	0	0	10	0	10	4	0	3	0	1	0	0	20	0	0	0	0	0	0	NOA
EXC	0	0	1	1	0	1	0	1	0	0	1	6	0	0	2	0	4	3	0	0	0	0	0	0	4	0	1	0	0	0	0	EXC
EU	0	0	2	0	0	2	1	1	1	0	2	19	1	0	9	0	13	11	0	1	0	1	1	0	14	0	0	0	0	0	0	EU
	AL	AM	AT	ΑZ	BA	BE	ВG	ΒY	СН	CY	CZ	DE	DK	EE	ES	FI	FR	GB	GE	GR	HR	ΗU	IE	IS	ΙТ	KG	КZТ	LT	LU	LV	MD	

C:16

Table C.7 Cont.: 2007 country-to-country blame matrices for **SOMO35**. Units: ppb.d per 15% emis. red. of VOC. **Emitters** \rightarrow , **Receptors** \downarrow . (Based on HIRLAM meteorology.)

	ME	MK	ΜT	NL	NO	ΡL	РΤ	RO	RS	RUE	SE	SI	SK	ТJ	ТΜ	TR	UA	UZ	ATL	BAS	BLS	MED	NOS	AST	NOA	BIC	DMS	VOL	EXC	EU	
AL	2	2	0	1	1	5	1	4	6	4	1	1	1	0	0	2	2	0	0	0	0	1	0	0	0	44	0	0	132	103	AL
ΔМ	0	0	0	0	0	2	0	1	0	9	0	0	0	0	0	5	2	0	0	0	0	0	0	1	0	13	0	0	60	17	АМ
ΔΤ	0	0	0	4	1	7	1	2	1	2	1	2	1	0	0	0	1	0	0	0	0	0	0	0	0	28	0	0	156	144	ΔΤ
17	0	0	0	1	1	2	-	2	-	20	1	2	0	0	0	4	2	0	0	0	0	0	0	1	0	20	0	0	01	24	17
AZ	1	0	0	1	1	с С	1	2	0	20	1	1	1	0	0	4	3	0	0	0	0	1	0	1	0	20	0	0	104	107	AZ
BA	1	0	0	2	1	0	1	4	4	3	1	1	1	0	0	1	2	0	0	0	0	1	0	0	0	31	0	0	124	107	BA
BF	0	0	0	12	1	4	1	1	0	2	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	30	0	0	145	139	BE
BG	0	1	0	1	1	7	1	10	3	9	1	0	1	0	0	2	5	0	0	0	0	0	0	0	0	33	0	0	109	82	BG
ΒY	0	0	0	1	1	7	0	1	0	8	1	0	0	0	0	0	2	0	0	0	0	0	0	0	0	16	0	0	58	42	ΒY
СН	0	0	0	4	1	4	1	1	0	2	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	26	0	0	163	142	CH
CY	0	0	0	1	1	5	0	4	2	12	1	0	1	0	0	36	5	0	0	0	0	1	0	1	0	55	0	0	124	58	CY
CZ	0	0	0	3	1	12	1	2	1	3	1	1	2	0	0	0	2	0	0	0	0	0	0	0	0	27	0	0	136	126	CZ
DE	0	0	0	6	1	7	1	1	0	2	1	0	1	0	0	0	1	0	0	0	0	0	1	0	0	28	0	0	138	130	DE
DK	0	0	0	4	2	5	0	1	0	4	3	0	0	0	0	0	1	0	0	0	0	0	1	0	0	25	0	0	80	72	DK
FF	0	0	0	1	1	3	0	0	0	7	2	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1/	0	0	45	3/	FF
	0	0	0	1	0	2	6	1	0	2	2	0	0	0	0	0	1	0	0	0	0	0	0	0	0	20	0	0	43	02	
	0	0	0	1	0	1	0	1	0	2	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	20	0	0	97	92	
FI	0	0	0	0	0	1	0	0	0	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	18	14	FI
FR	0	0	0	4	1	4	1	1	0	2	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	29	0	0	131	124	FR
GB	0	0	0	2	2	2	0	0	0	2	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	16	0	0	63	57	GB
GE	0	0	0	1	1	3	0	2	1	16	0	0	0	0	0	5	3	0	0	0	0	0	0	1	0	20	0	0	82	26	GE
GL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	0	0	4	3	GL
GR	1	2	0	1	1	6	1	6	4	7	1	1	1	0	0	3	4	0	0	0	0	1	0	0	0	43	0	0	122	95	GR
HR	0	0	0	2	1	8	1	3	3	3	1	2	1	0	0	1	2	0	0	0	0	0	0	0	0	36	0	0	136	122	HR
ΗU	0	0	0	2	1	13	1	5	3	4	1	1	3	0	0	0	3	0	0	0	0	0	0	0	0	31	0	0	133	117	ΗU
IE	0	0	0	2	1	2	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	10	0	0	47	42	IE
IS	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	0	0	11	9	IS
іт	0	0	0	2	1	5	1	2	° 2	3	1	2	1	0	0	1	1	0	0	0	0	1	0	0	0	17	0	0	213	100	іт
KC	0	0	0	2	0	1	1	2	2	5	1	2	0	1	0	1	1	7	0	0	0	1	0	1	0	41	0	0	213	199	VC
	0	0	0	0	1	1	0	1	0	10	1	0	0	1	0	1	1	,	0	0	0	0	0	1	0	17	0	0	12	10	
NZ I	0	0	0	0	1	2	0	1	0	19	1	0	0	0	0	1	2	0	0	0	0	0	0	0	0	17	0	0	43	10	NZ I
LI	0	0	0	2	1	1	0	1	0	5	T	0	0	0	0	0	1	0	0	0	0	0	0	0	0	17	0	0	61	50	LI
LU	0	0	0	7	1	5	1	1	0	2	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	27	0	0	134	128	LU
LV	0	0	0	2	1	5	0	1	0	5	2	0	0	0	0	0	1	0	0	0	0	0	0	0	0	15	0	0	51	41	LV
MD	0	0	0	1	1	7	0	7	1	10	1	0	1	0	0	1	7	0	0	0	0	0	0	0	0	23	0	0	79	54	MD
ME	3	1	0	1	1	5	1	4	5	3	1	1	1	0	0	1	2	0	0	0	0	1	0	0	0	37	0	0	119	96	ME
MK	1	4	0	1	1	5	1	5	5	4	1	0	1	0	0	1	3	0	0	0	0	0	0	0	0	33	0	0	106	82	MK
MT	0	0	14	2	1	5	3	4	2	4	1	1	1	0	0	1	2	0	0	0	0	6	0	0	0	79	0	0	219	202	MT
NL	0	0	0	13	2	5	0	1	0	3	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	29	0	0	128	120	NL
NO	0	0	0	1	1	1	0	0	0	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	24	20	NO
PI	0	0	0	3	1	19	0	2	1	4	1	0	1	0	0	0	2	0	0	0	0	0	0	0	0	24	0	0	100	89	PI
DT	0	0	0	1	0	2	35	1	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	28	0	0	101	07	DT
	0	0	0	1	1	~	1	15	2	0	1	0	1	0	0	1	5	0	1	0	0	0	0	0	0	20	0	0	101	91	
	1	1	0	1	1	0	1	15	10	0	1	1	1	0	0	1	2	0	0	0	0	0	0	0	0	20	0	0	100	03	
RS	1	1	0	2	1	1	1	1	10	4	1	1	1	0	0	1	3	0	0	0	0	0	0	0	0	32	0	0	117	91	RS
RUE	0	0	0	0	0	1	0	0	0	9	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	5	0	0	18	(RUE
SE	0	0	0	1	1	1	0	0	0	2	T	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8	0	0	29	25	SE
SI	0	0	0	2	1	7	1	2	1	3	1	5	1	0	0	1	2	0	0	0	0	0	0	0	0	36	0	0	161	149	SI
SK	0	0	0	3	1	17	1	4	2	4	1	1	4	0	0	0	3	0	0	0	0	0	0	0	0	29	0	0	132	117	SK
ΤJ	0	0	0	0	0	1	0	0	0	5	0	0	0	3	0	1	1	5	0	0	0	0	0	1	0	6	0	0	25	7	ΤJ
ТΜ	0	0	0	1	1	3	0	1	0	23	1	0	0	0	0	2	2	2	0	0	0	0	0	1	0	31	0	0	64	24	ТМ
TR	0	0	0	1	1	4	0	3	1	12	1	0	1	0	0	19	4	0	0	0	0	0	0	1	0	27	0	0	83	38	TR
UA	0	0	0	1	1	7	0	3	1	15	1	0	1	0	0	1	10	0	0	0	0	0	0	0	0	22	0	0	78	45	UA
UΖ	0	0	0	1	1	3	0	1	0	22	1	0	0	1	0	1	2	5	0	0	0	0	0	1	0	28	0	0	62	21	UΖ
ATI	0	0	0	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	19	16	ATI
RAS	0	0	0	2	2	5	0	1	0	6	1	0	0	0	0	0	1	0	0	1	0	0	1	0	0	21	0	0	60	58	RAS
	~	0	0	- 1	4	о О	0	۲ د	1	24	+	0	1	0	~	0	10	0	0	~ T	0	0	- -	0	0	~1	0	0	126	50	DIC DIC
DL3	U -	-	Ű	Ţ	1	ŏ	0	0	Ţ	34	1	U 1	1	0	0	ŏ	12	0	0	0	0	0	0	Ű	Ű	44	0	0	130	105	DLO
NOC	1	1	0	2	1	6	2	5	3	1	1	1	1	0	0	1	4	U	0	0	0	3	0	U	U	13	0	U	192	101	NED
NOS	0	0	0	4	4	3	0	1	0	3	2	0	0	0	0	0	1	0	0	0	0	0	1	0	0	24	0	0	86	/6	NOS
AST	0	0	0	0	0	1	0	1	0	9	0	0	0	0	0	3	1	0	0	0	0	0	0	3	0	11	0	0	34	13	AST
NOA	0	0	0	1	1	3	1	2	1	3	0	0	1	0	0	2	2	0	0	0	0	1	0	0	0	44	0	0	86	73	NOA
EXC	0	0	0	1	0	2	0	1	0	9	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	12	0	0	44	28	EXC
EU	0	0	0	3	1	5	2	2	1	3	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	25	0	0	101	92	EU
	MF	ΜК	мт	NI	NO	ΡI	ΡТ	RO	RS	RUE	SE	SI	SK	тι	тм	TR	UA	U7	ATI	BAS	BLS	MFD	NOS	AST	NOA	BIC	DMS	VOI	FXC	FU	

Table C.8: 2007 country-to-country blame matrices for **PM2.5**. Units: ng/m³ per 15% emis. red. of PPM. **Emitters** \rightarrow , **Receptors** \downarrow . (Based on HIRLAM meteorology.)

	AL	AM	AT	ΑZ	ΒA	BE	ΒG	ΒY	СН	CY	CZ	DE	DK	EE	ES	FI	FR	GΒ	GE	GR	HR	ΗU	IE	IS	IT	KG	KZT	LT	LU	LV	MD	
AL	50	0	1	0	4	0	5	0	0	0	1	2	0	0	2	0	4	0	0	23	0	2	0	0	14	0	0	0	0	0	0	AL
AM	0	1	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	2	0	0	0	0	AM
AT	0	0	60	0	0	1	0	0	3	0	5	19	0	0	1	0	12	1	0	0	0	3	0	0	10	0	0	0	0	0	0	AT
AZ	0	0	0	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	5	0	0	0	0	AZ
BA	1	0	4	0	43	0	1	0	0	0	2	4	0	0	2	0	5	0	0	1	0	5	0	0	14	0	0	0	0	0	0	BA
BE	0	0	1	0	0	137	0	0	0	0	1	32	2	0	1	0	100	13	0	0	0	0	1	0	0	0	0	0	2	0	0	BE
BG	1	0	1	0	2	0	146	0	0	0	1	2	0	0	1	0	2	0	0	9	0	3	0	0	3	0	0	0	0	0	1	BG
ΒY	0	0	1	0	0	0	0	34	0	0	2	3	1	2	0	1	3	1	0	0	0	1	0	0	1	0	1	3	0	2	0	ΒY
СН	0	0	3	0	0	1	0	0	49	0	1	18	0	0	2	0	50	1	0	0	0	0	0	0	14	0	0	0	0	0	0	СН
CY	0	0	0	0	0	0	2	0	0	25	0	0	0	0	1	0	1	0	0	4	0	0	0	0	2	0	0	0	0	0	0	CY
CZ	0	0	12	0	0	1	0	0	1	0	54	29	1	0	1	0	15	2	0	0	0	3	0	0	3	0	0	0	0	0	0	CZ
DE	0	0	4	0	0	6	0	0	2	0	4	105	4	0	1	0	46	4	0	0	0	0	0	0	1	0	0	0	1	0	0	DE
DK	0	0	0	0	0	1	0	0	0	0	0	7	89	0	0	0	5	6	0	0	0	0	0	0	0	0	0	0	0	0	0	DK
EE	0	0	0	0	0	0	0	2	0	0	0	2	2	59	0	8	1	1	0	0	0	0	0	0	0	0	0	2	0	8	0	EE
ES	0	0	0	0	0	1	0	0	0	0	0	1	0	0	99	0	18	1	0	0	0	0	0	0	1	0	0	0	0	0	0	ES
FI	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	33	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	FI
FR	0	0	1	0	0	6	0	0	2	0	1	12	1	0	5	0	216	6	0	0	0	0	0	0	5	0	0	0	1	0	0	FR
GB	0	0	0	0	0	1	0	0	0	0	0	3	1	0	0	0	6	66	0	0	0	0	2	0	0	0	0	0	0	0	0	GB
GE	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	2	0	0	0	0	GE
GL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	GL
GR	4	0	1	0	2	0	24	0	0	0	1	1	0	0	2	0	2	0	0	84	0	1	0	0	8	0	0	0	0	0	0	GR
HR	0	0	8	0	12	0	1	0	1	0	3	5	0	0	2	0	6	1	0	1	0	9	0	0	23	0	0	0	0	0	0	HR
ΗU	0	0	12	0	3	0	1	1	1	0	6	7	1	0	1	0	6	1	0	0	0	66	0	0	8	0	0	0	0	0	0	ΗU
IE	0	0	0	0	0	1	0	0	0	0	0	2	1	0	0	0	4	9	0	0	0	0	18	0	0	0	0	0	0	0	0	IE
IS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	IS
IT	0	0	3	0	2	0	1	0	2	0	1	3	0	0	5	0	14	0	0	1	0	1	0	0	143	0	0	0	0	0	0	IT
KG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	75	47	0	0	0	0	KG
КZТ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	80	0	0	0	0	КZТ
LT	0	0	1	0	0	1	0	7	0	0	1	4	3	3	0	1	3	1	0	0	0	0	0	0	1	0	0	29	0	8	0	LT
LU	0	0	1	0	0	26	0	0	1	0	2	43	1	0	1	0	323	6	0	0	0	0	0	0	1	0	0	0	73	0	0	LU
LV	0	0	0	0	0	0	0	4	0	0	1	3	2	9	0	3	2	1	0	0	0	0	0	0	0	0	0	7	0	37	0	LV
MD	0	0	1	0	1	0	4	2	0	0	1	2	1	0	0	0	2	0	0	1	0	2	0	0	1	0	1	0	0	0	41	MD
ME	6	0	2	0	11	0	3	0	0	0	1	2	0	0	2	0	4	0	0	3	0	2	0	0	12	0	0	0	0	0	0	ME
MK	8	0	1	0	3	0	21	0	0	0	1	2	0	0	1	0	2	0	0	36	0	2	0	0	6	0	0	0	0	0	0	MK
MT	0	0	1	0	2	0	1	0	0	0	0	1	0	0	8	0	11	0	0	2	0	0	0	0	34	0	0	0	0	0	0	ΜТ
NL	0	0	0	0	0	27	0	0	0	0	1	36	3	0	1	0	35	15	0	0	0	0	1	0	0	0	0	0	0	0	0	NL
NO	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	2	0	0	0	0	0	0	0	0	0	0	NO
ΡL	0	0	2	0	0	1	0	3	0	0	8	14	4	1	0	0	7	2	0	0	0	2	0	0	2	0	0	1	0	1	0	PL
ΡT	0	0	0	0	0	0	0	0	0	0	0	1	0	0	37	0	10	1	0	0	0	0	0	0	0	0	0	0	0	0	0	РТ
RO	0	0	2	0	2	0	11	1	0	0	2	2	1	0	1	0	2	0	0	1	0	7	0	0	3	0	0	0	0	0	2	RO
RS	2	0	3	0	10	0	8	0	0	0	2	3	0	0	1	0	3	0	0	3	0	9	0	0	7	0	0	0	0	0	0	RS
RUE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	6	0	0	0	0	RUE
SE	0	0	0	0	0	0	0	0	0	0	0	1	3	1	0	2	1	1	0	0	4	0	0	0	0	0	0	0	0	0	0	SE
SI	0	0	22	0	2	1	1	0	1	0	3	7	0	0	2	0	8	1	0	0	0	4	0	0	40	0	0	0	0	0	0	SI
SK	0	0	10	0	1	0	1	1	1	0	11	8	1	0	1	0	6	1	0	0	0	18	0	0	4	0	0	0	0	0	0	SK
ТJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	22	0	0	0	0	ТJ
ТМ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	25	0	0	0	0	ТМ
TR	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	1	0	0	2	0	0	0	0	1	0	1	0	0	0	0	TR
UA	0	0	1	0	0	0	2	3	0	0	1	2	1	0	0	0	2	0	0	1	0	2	0	0	1	0	1	0	0	0	3	UA
UZ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11	57	0	0	0	0	UZ
ATL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	ATL
BAS	0	0	0	0	0	1	0	1	0	0	0	5	12	4	0	7	3	2	0	0	0	0	0	0	0	0	0	1	0	3	0	BAS
BLS	0	0	0	0	0	0	8	1	0	0	0	1	0	0	0	0	1	0	1	2	0	1	0	0	1	0	1	0	0	0	1	BLS
MED	1	0	1	0	2	0	4	0	0	0	0	2	0	0	12	0	15	0	0	9	0	1	0	0	24	0	0	0	0	0	0	MED
NOS	0	0	0	0	0	2	0	0	0	0	0	4	4	0	0	0	10	20	0	0	0	0	1	0	0	0	0	0	0	0	0	NOS
AST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	9	0	0	0	0	AST
NOA	0	0	0	0	0	0	2	0	0	0	0	1	0	0	4	0	4	0	0	3	0	0	0	0	5	0	0	0	0	0	0	NOA
EXC	0	0	1	0	0	1	1	1	0	0	1	3	1	0	3	1	7	1	0	1	0	1	0	0	3	1	14	0	0	0	0	EXC
EU	0	0	3	0	1	3	5	1	1	0	3	14	2	1	14	3	38	6	0	3	1	3	1	0	12	0	0	1	0	1	0	EU
	AL	AM	AT	ΑZ	ΒA	BE	BG	ΒY	СН	CY	CZ	DE	DK	EE	ES	FI	FR	GB	GE	GR	HR	ΗU	IE	IS	IT	KG	КZТ	LT	LU	LV	MD	

Table C.8 Cont.: 2007 country-to-country blame matrices for **PM2.5**. Units: ng/m³ per 15% emis. red. of PPM. **Emitters** \rightarrow , **Receptors** \downarrow . (Based on HIRLAM meteorology.)

	ME	MK	MT	NL	NO	PL	ΡT	RO	RS	RUE	SE	SI	SK	ТJ	ТΜ	TR	UA	UZ	ATL	BAS	BLS	MED	NOS	AST	NOA	BIC	DMS	VOL	EXC	EU	
AL	7	10	0	0	0	3	1	3	22	1	0	0	2	0	0	1	3	0	0	0	0	10	0	0	0	0	0	0	161	62	AL
AM	0	0	0	0	0	0	0	0	0	3	0	0	0	0	1	20	1	1	0	0	0	0	0	8	0	0	0	0	36	1	AM
AT	0	0	0	1	0	6	0	1	1	1	0	4	5	0	0	0	2	0	0	0	0	1	1	0	0	0	0	0	137	129	AT
AZ	0	0	0	0	0	0	0	0	0	9	0	0	0	0	2	8	2	2	0	0	0	0	0	11	0	0	0	0	46	2	AZ
BA	5	0	0	0	0	5	1	3	15	1	0	1	4	0	0	0	3	0	0	0	0	4	0	0	0	0	0	0	122	53	BA
BE	0	0	0	26	1	3	0	0	0	1	0	0	0	0	0	0	1	0	1	1	0	0	24	0	0	0	0	0	324	321	BE
BG	1	3	0	0	0	4	0	21	13	4	0	0	3	0	0	5	15	0	0	0	2	2	0	0	0	0	0	0	244	198	BG
BY	0	0	0	0	1	20	0	2	0	13	1	0	3	0	0	1	24	0	0	1	0	0	1	0	0	0	0	0	124	48	BY
СН	0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	144	95	СН
CY	0	0	0	0	0	1	0	1	1	3	0	0	0	0	0	78	5	0	0	0	1	15	0	5	1	0	0	0	128	30	CY
C7	0	0	0	1	1	25	0	1	1	1	1	1	11	0	0	0	4	0	0	1	0	10	2	0	0	0	0	0	170	161	C7
DE	0	0	0	7	1	20	0	0	0	1	1	0	1	0	0	0	2	0	0	3	0	0	7	0	0	0	0	0	201	101	DE
DK	0	0	0	2	6	5	0	0	0	2	5	0	0	0	0	0	1	0	1	17	0	0	16	0	0	0	0	0	132	123	DK
FF	0	0	0	0	° 2	1	0	0	0	12	1	0	0	0	0	0	1	0	0	2	0	0	1	0	0	0	0	0	115	03	FF
ES	0	0	0	0	2 0	4	23	0	0	13	4	0	0	0	0	0	4	0	3	0	0	3	1	0	0	0	0	0	147	1/17	FS
	0	0	0	0	2	1	23	0	0	0	4	0	0	0	0	0	1	0	0	2	0	0	1	0	0	0	0	0	14 <i>1</i>	147	
	0	0	0	0	2	1	1	0	0	4	4	0	0	0	0	0	1	0	0	2	0	0	0	0	0	0	0	0	262	42 250	
	0	0	0	2	1	1	1	0	0	0	0	0	0	0	0	0	1	0	2	0	0	2	0	0	0	0	0	0	202	209	
GB	0	0	0	2	1	1	0	0	0	0	0	0	0	0	0	0	1	0	4	0	0	0	9	0	0	0	0	0	80	84	GB
GE	0	0	0	0	0	0	0	0	0	9	0	0	0	0	1	10	3	1	0	0	0	0	0	3	0	0	0	0	45	3	GE
GL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	GL
GR	1	(0	0	0	3	1	5	(2	0	0	1	0	0	9	(0	0	0	1	13	0	0	1	0	0	0	173	134	GR
HR	1	0	0	0	0	7	1	3	11	1	0	7	5	0	0	0	3	0	0	0	0	6	1	0	0	0	0	0	114	83	HR
HU	0	0	0	0	1	17	0	9	11	2	0	4	34	0	0	0	9	0	0	0	0	1	1	0	0	0	0	0	203	175	HU
IE	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	2	0	0	0	0	0	38	37	IE
IS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	1	IS
IT	0	0	0	0	0	2	1	1	2	0	0	2	1	0	0	0	1	0	0	0	0	13	0	0	0	0	0	0	187	179	IT
KG	0	0	0	0	0	0	0	0	0	2	0	0	0	8	1	0	0	77	0	0	0	0	0	4	0	0	0	0	210	0	KG
KZT	0	0	0	0	0	0	0	0	0	26	0	0	0	0	1	0	2	7	0	0	0	0	0	1	0	0	0	0	123	1	KZT
LT	0	0	0	1	2	20	0	1	0	13	3	0	1	0	0	1	8	0	0	4	0	0	2	0	0	0	0	0	115	84	LT
LU	0	0	0	8	0	3	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	7	0	0	0	0	0	495	491	LU
LV	0	0	0	0	2	9	0	0	0	10	3	0	1	0	0	1	6	0	0	5	0	0	1	0	0	0	0	0	105	81	LV
MD	0	0	0	0	1	11	0	37	2	8	0	0	3	0	0	3	70	0	0	0	1	1	0	0	0	0	0	0	198	69	MD
ME	47	2	0	0	0	3	0	3	19	1	0	0	2	0	0	1	2	0	0	0	0	5	0	0	0	0	0	0	128	40	ME
MK	2	44	0	0	0	3	0	5	23	1	0	0	2	0	0	2	4	0	0	0	0	3	0	0	0	0	0	0	173	85	MK
MT	0	0	22	0	0	1	2	1	1	0	0	0	0	0	0	1	1	0	0	0	0	96	0	0	3	0	0	0	92	86	ΜT
NL	0	0	0	99	1	3	0	0	0	1	1	0	0	0	0	0	2	0	1	2	0	0	44	0	0	0	0	0	228	223	NL
NO	0	0	0	0	23	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	31	5	NO
ΡL	0	0	0	1	2	118	0	1	1	3	2	0	7	0	0	0	10	0	0	3	0	0	2	0	0	0	0	0	195	175	PL
ΡT	0	0	0	0	0	0	292	0	0	0	0	0	0	0	0	0	0	0	14	0	0	0	1	0	0	0	0	0	344	343	ΡT
RO	1	1	0	0	0	9	0	96	9	4	0	0	7	0	0	2	24	0	0	0	1	1	0	0	0	0	0	0	193	147	RO
RS	5	3	0	0	0	7	0	14	90	1	0	1	7	0	0	1	6	0	0	0	0	2	0	0	0	0	0	0	190	70	RS
RUE	0	0	0	0	0	0	0	0	0	42	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	56	3	RUE
SE	0	0	0	0	9	1	0	0	0	1	17	0	0	0	0	0	1	0	0	3	0	0	2	0	0	0	0	0	44	29	SE
SI	0	0	0	0	0	6	1	1	2	1	0	47	3	0	0	0	3	0	0	0	0	5	1	0	0	0	0	0	155	146	SI
SK	0	0	0	1	1	36	0	4	4	2	0	2	113	0	0	0	10	0	0	1	0	1	1	0	0	0	0	0	238	218	SK
ТJ	0	0	0	0	0	0	0	0	0	1	0	0	0	50	2	0	0	65	0	0	0	0	0	14	0	0	0	0	152	0	ТJ
тм	0	0	0	0	0	0	0	0	0	8	0	0	0	2	38	2	1	33	0	0	0	0	0	13	0	0	0	0	111	1	тм
TR	0	0	0	0	0	1	0	2	1	4	0	0	0	0	0	118	7	0	0	0	1	3	0	3	0	0	0	0	145	13	TR
UA	0	0	0	0	1	13	0	6	1	19	1	0	4	0	0	3	177	0	0	1	1	0	0	0	0	0	0	0	248	38	UA
U7	0	0	0	0	0	0	0	0	0	9	0	0	0	8	8	1	1	119	0	0	0	0	0	6	0	0	0	0	215	1	U7
	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	8	7	
RAS	0	0	0	1	4	8	0	0	0	5	12	0	0	0	0	0	2	0	0	19	0	0	4	0	0	0	0	0	74	61	RAS
BIS	n	0	n	n i	ب ۱	4	n	я 2	2	21	<u>۲</u>	n	1	n	n	37	47	n	n	0	0	1	-7 0	1	0	n	0	n	141	20	RIS
MED	1	1	0	0	n	ד כ	о С	0 2	2 2	1	n	n	1	n	0	17	-+ / /	0	0	0	9	16	0	1	2	n N	0	0	105	29 75	MED
	۰ ۲	۰ ۲	0	2	5	2 2	ے م	2 م	ے م	1	1	0	۰ ۲	0	0	0	1	0	0 2	1	0	0+-	26	^ 1	2	0	0	0	103	13	NICC
VCT	0	0	0	о О	с 0	2 0	0	0	0	L L	U L	0	0	1	0 2	7	1	U E	2	0 T	0	1	20	0 01	0	0	0	0	22	41 1	ACT
	0	0	0	0	0	0	1	1	1	4	0	0	0	U T	ے م	і л	1	5 0	0	0	0	11	0	21 0	0	0	0	0	20	1 22	NOA
EVC	0	0	0	0	1	U 2	1 1	л Т	1	ר ז⊏	1	0	1	1	1	4 5	0	U E	0	0	0	11	1	1	0	0	0	0	06	22	EVC
	0	0	0	0	1	3 12	2	2	1	20	1	1	Ţ	T	1	5 1	ŏ 4	5	1	U	U	1	1	1	U	0	U	0	90	32 140	
EU	U	U	U	2	2	13	9 DT	0	2		ڻ 	L	4	U T I	U		4	0	ן ידי	2	U	2	3	U	U	U			102	149	EU
	IVIE	NIN	IVÍ I	INL	NO	۲L	РΙ	ĸυ	к2	RUE	эE	21	э٨	IJ	I íVI	ıК	UA	υZ	AIL	DAD	DLS	IVIED	1102	ASI	NUA	ыC	UN12	VUL	EXC	EU	

Table C.9: 2007 country-to-country blame matrices for **PM2.5**. Units: ng/m³ per 15% emis. red. of SO_x. **Emitters** \rightarrow , **Receptors** \downarrow . (Based on HIRLAM meteorology.)

	AL	AM	AT	ΑZ	BA	BE	BG	ΒY	СН	CY	CZ	DE	DK	EE	ES	FI	FR	GΒ	GE	GR	HR	ΗU	IΕ	IS	IT	KG	KZT	LT	LU	LV	MD	
AL	38	0	1	0	59	1	60	0	0	0	5	7	0	0	17	0	5	2	0	69	0	4	0	0	28	0	1	0	0	0	0	AL
AM	0	9	0	55	1	0	3	0	0	0	0	0	0	0	0	0	0	-0	4	2	0	0	-0	0	0	0	20	0	0	0	0	AM
AT	0	0	11	0	6	4	5	0	4	0	20	44	0	0	10	0	14	4	0	1	0	4	0	0	21	0	0	0	0	0	0	AT
AZ	0	2	0	97	1	0	2	0	0	0	0	0	0	0	0	0	0	0	4	1	0	0	0	0	0	1	44	0	0	0	0	ΑZ
BA	2	0	2	0	190	1	16	0	1	0	11	13	0	0	17	0	7	3	0	7	0	8	0	0	26	-0	0	0	0	0	0	BA
BE	0	0	1	0	1	69	1	0	0	0	8	51	1	0	14	0	54	42	0	0	0	1	3	0	1	0	1	0	0	0	0	BE
BG	2	0	1	0	28	1	277	1	0	0	7	7	0	1	7	0	3	2	0	25	0	6	0	0	7	0	4	0	0	0	1	BG
BY	0	0	0	0	4	1	6	28	0	0	6	9	1	4	3	2	2	4	0	2	1	2	0	0	1	0	6	5	0	0	0	ΒY
СН	0	0	2	0	4	6	2	0	19	-0	7	40	0	0	20	0	36	5	0	0	0	1	0	0	19	0	0	0	0	0	0	СН
CY	1	0	0	1	8	0	30	1		11	2	2	0	0	-0	0	2	1	0	45	0	1	0	0	5	0	4	0	0	0	0	CY
C7	0	0	5	0	6	5	4	1	1	0	65	58	1	0	8	0	14	8	0	1	0	5	1	0	7	0	0	0	0	0	0	C7
	0	0	2	0	1	13	2	1	2	0	17	01	1	1	11	0	26	21	0	0	0	1	1	0	2	0	1	1	0	0	0	
	0	0	2 0	0	1	10	2	1		0	21	1/	7	2	2	1	20	21	0	0	0	0	1	0		0	1	1	0	0	0	
EE	0	0	0	0	1	1	1	2	0	0	1	14	1	2	1		2	20	0	1	2	0	0	0	0	0	2	2	0	0	0	EE
EE	0	0	0	0	1	1	1	3	0	0	1	4	1	23	104	8	2	0	0	1	2	0	0	0	0	-0	3	3	0	0	0	EE
ES	0	0	0	0	3	2	1	1	0	0	1	2	0	0	184	15	14	0	0	1	-0	0	0	0	4	-0	1	0	0	0	0	E3
FI	0	0	0	0	0	0	0	1	0	0	0	1	0	4	0	15	0	3	0	0	(0	0	0	0	0	1	0	0	0	0	FI
FR	0	0	1	-0	3	12	2	0	2	-0	6	28	0	0	40	0	63	21	-0	1	0	1	2	0	8	0	0	0	0	0	0	FR
GB	0	0	0	0	0	2	0	0	0	0	1	7	1	0	2	0	5	67	0	0	0	0	5	0	0	0	0	0	0	0	0	GB
GE	0	2	0	44	2	0	5	0	0	0	1	1	0	0	1	0	0	0	15	1	0	0	0	0	1	0	19	0	0	0	0	GE
GL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	GL
GR	8	0	1	0	31	1	173	1	0	0	5	6	0	0	12	0	4	1	0	126	0	4	0	0	17	0	3	0	0	0	1	GR
HR	1	0	4	0	90	2	13	1	1	0	15	17	0	0	18	0	9	3	0	4	0	11	0	0	41	0	0	0	0	0	0	HR
HU	1	0	4	0	37	2	12	1	1	0	24	23	0	0	10	0	7	4	0	3	0	40	0	0	17	0	1	1	0	0	0	HU
IE	0	0	0	0	0	1	0	0	0	0	1	4	0	0	1	0	3	25	0	0	0	0	17	0	0	0	0	0	0	0	0	IE
IS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	2	0	0	0	0	0	0	0	IS
IT	1	0	3	0	34	2	10	0	2	0	8	13	0	0	35	0	19	3	0	8	0	3	0	0	115	0	0	0	0	0	0	IT
KG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	0	0	0	0	0	0	0	229	185	0	0	0	0	KG
КZТ	0	0	0	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	19	227	0	0	0	0	кzт
LT	0	0	0	0	2	2	3	8	0	0	4	11	1	5	2	3	3	6	0	1	1	1	0	0	1	0	3	16	0	1	0	LT
LU	0	0	1	0	1	33	1	0	1	0	12	63	1	1	18	0	53	27	0	0	0	1	2	0	2	-0	0	0	2	0	0	LU
IV	0	0	0	0	2	2	2	7	0	0	2	7	1	8	1	4	2	6	0	1	1	1	0	0	1	-0	3	7	0	1	0	IV
MD	0	0	1	1	10	1	27	4	0	0	8	7	0	1	4	1	2	2	0	6	0	4	0	0	2	0	7	1	0	0	12	MD
ME	8	0	1	0	91	1	32	0	0	0	6	9	0	0	15	0	6	2	0	21	0	4	0	0	24	0	1	0	0	0	0	ME
MK	11	0	1	0	/1	1	132	0	0	0	6	7	0	0	11	0	1	1	0	60	0	5	0	0	1/	0	2	0	0	0	0	MK
МТ	2	0	1	0	33	1	10	0	0	0	1	7	0	0	50	0	1/	3	0	23	0	2	0	0	86	0	0	0	0	0	0	МТ
NI	0	0	0	0	0	25	15	0	0	0	6	10	2	0	0	0	20	16	0	25	0	0	2	0	00	0	1	0	0	0	0	NI
	0	0	0	0	0	25	0	0	0	0	0	40	2	1	9	1	20	40	0	0	0	0	0	0	0	0	1	0	0	0	0	
NU	0	0	1	0	0	0	0	0	0	0	0	1	0	1	0	1	1	4	0	1	4	0	1	0	0	0	1	0	0	0	0	NU
PL	0	0	1	0	1	3	3	4	0	0	20	32	2	1	5	1	1	9	0	1	0	4	1	0	4	0	1	2	0	0	0	PL
PI	0	0	0	0	2	2	0	0	0	0	1	3	0	0	100	0	9	5	0	0	-0	0	1	0	1	0	0	0	0	0	0	PI
RO	1	0	1	1	24	1	44	2	0	0	10	10	0	1	6	0	3	2	0	8	0	11	0	0	6	0	3	1	0	0	2	RO
RS	4	0	2	0	79	1	42	1	0	0	12	14	0	0	12	0	5	2	0	14	0	13	0	0	15	0	1	0	0	0	1	RS
RUE	0	0	0	1	0	0	1	1	0	0	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	1	30	0	0	0	0	RUE
SE	0	0	0	0	0	1	0	1	0	0	1	3	1	2	1	3	1	7	0	0	7	0	0	0	0	0	0	1	0	0	0	SE
SI	0	0	8	0	22	3	9	1	2	0	16	24	0	0	17	0	11	4	0	2	0	7	0	0	75	0	0	0	0	0	0	SI
SK	0	0	4	0	20	2	6	2	1	0	30	24	0	0	7	0	7	5	0	2	0	20	0	0	12	0	1	1	0	0	0	SK
ТJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	0	0	0	0	0	0	0	60	121	0	0	0	0	ТJ
ТМ	0	0	0	4	1	0	2	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	12	123	0	0	0	0	ТΜ
TR	1	1	0	4	5	0	29	1	0	1	2	2	0	0	3	0	1	1	1	15	0	1	0	0	2	0	6	0	0	0	0	TR
UA	0	0	0	2	6	1	14	6	0	0	6	7	0	2	3	1	2	2	0	4	0	3	0	0	2	0	11	1	0	0	2	UA
UZ	0	0	0	2	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	47	209	0	0	0	0	UZ
ATL	0	0	0	0	0	0	0	0	0	0	0	1	0	0	4	0	2	4	0	0	0	0	1	0	0	0	0	0	0	0	0	ATL
BAS	0	0	0	0	1	2	1	2	0	0	2	9	2	5	1	5	3	11	0	0	2	0	1	0	0	0	1	2	0	0	0	BAS
BLS	0	0	0	6	6	1	36	2	0	0	4	4	0	1	2	0	1	2	2	9	0	2	0	0	2	0	12	1	0	0	1	BLS
MED	2	0	1	0	27	1	43	0	0	2	4	7	0	0	48	0	14	3	0	41	0	2	0	0	41	0	2	0	0	0	0	MED
NOS	0	0	0	ñ	0	3	.0	ñ	ñ	0	1	א	1	1	2	ñ	6	35	ñ	0	0	0	2	0 0	0	ñ	0	ñ	0 0	n 0	ñ	NOS
AST	ñ	0	n	4	1	n	3	n	n	1	n	n	n	ń	1	n	ñ	0	ñ	3	0	ñ	0	0 0	n	15	53	n	ñ	n	n	AST
NOA	1	0	n	ب ۵	10	n	23	n	n	۰ ۱	2	2	n	n	24	n	5	1	n	25	n	1	0	n	14	10	1	n	n	n	n	NOA
FXC	<u>۱</u>	0	n	1	3 10	1	2J 6	1	n	n	2 2	ך ד	n 0	1	24 7	1	2	3	n	2J 2	1	1	n	0	5 74	6	50	n	n	n	n	FXC
EII	0	0	1	۰ ۲	0	۲ ۲	17	1	1	0	2 0	21	1	1	י 26	1 N	16	12	0	4	1	2	1	0	12	0	1	1	0	0	0	EII
LU	ں ۸۱		Τ ΛΤ	0 A7	0	р Б	11		C LI		0 7		יח		20	2 E1	ED 10	CD 73		CP	цр	о ПП	IE T	U IC	12	v kc	1 1	1 1 T	111	11/		LU
	AL	MIVE	A I	πL	DA	DΕ	DG	וט	СΠ	CΤ	LΖ	DΕ	υn	ᄂᄃ	Ľ3	1.1	ПΠ	чD	ЧE	чп	ліг	110	IC.	S	11	ĽО	NZT	L I	LU	LV	IVID	

Table C.9 Cont.: 2007 country-to-country blame matrices for **PM2.5**. Units: ng/m³ per 15% emis. red. of SO_x. **Emitters** \rightarrow , **Receptors** \downarrow . (Based on HIRLAM meteorology.)

	ME	MK	MT	NL	NO	PL	РΤ	RO	RS	RUE	SE	SI	SK	ТJ	ТΜ	TR	UA	UZ	ATL	BAS	BLS	MED	NOS	AST	NOA	BIC	DMS	VOL	EXC	EU	
AL	23	40	1	0	0	17	1	36	101	3	0	1	2	0	0	4	13	0	1	1	1	52	1	0	4	7	3	23	541	258	AL
AM	0	0	0	0	0	2	0	4	1	12	0	0	0	0	6	99	7	5	0	0	1	1	0	41	0	8	0	21	233	13	AM
AT	0	0	0	2	0	36	1	14	8	2	0	4	4	0	0	1	10	0	1	1	0	6	5	0	1	8	1	3	235	201	AT
AZ	0	0	0	0	0	3	0	4	1	29	0	0	0	0	10	49	11	9	0	0	1	1	0	31	0	6	0	16	273	13	AZ
BA	11	3	0	1	0	29	1	35	84	3	0	1	5	-0	0	2	15	0	1	1	0	22	3	0	2	6	2	7	495	183	BA
BE	0	0	0	14	0	19	0	2	1	2	0	0	1	-0	0	0	5	0	7	5	0	1	53	0	0	13	8	2	295	284	BE
BG	5	10	0	0	0	32	0	131	59	15	0	0	4	0	0	8	56	0	0	1	5	10	2	1	2	6	2	10	702	512	BG
BY	0	1	0	1	0	64	0	11	5	30	1	0	2	-0	0	4	40	0	1	6	0	1	4	1	0	4	2	2	250	129	BY
СН	0	0	0	2	0	14	1		3	0	0	0	1	-0	0	0	1	0	2	1	0	6	6	0	1	9	2	3	188	160	СН
CY	2	4	0	0	0	0	0	22	13	13	0	0	1	0	0	380	30	0	0	0	4	60	1	22	- 3	Q	10	32	605	146	CY
C7	0	0	0	2	0	84	0	12	0	10	0	1	8	0	0	1	17	0	1	3	0	3	0	0	0	a	2	2	331	200	C7
	0	0	0	7	0	/1	0	5	2	2	1	0	2	0	0	0	21	0	3	0	0	2	24	0	0	10	5	2	265	247	
	0	0	0	2	1	10	0	2	1	5	2	0	0	-0	0	0	5	0	3	28	0	-	24	0	0	20	10	- 1	108	03	
EE	0	0	0	1	1	14	0	2	1	21	2	0	0	-0	0	2	14	0	1	10	0	0	59	1	0	4	201	2	120	30	EE
	0	0	0	1	0	14	10	1	1	21	2	0	0	-0	0	о 0	14	0	12	10	0	14	0	1	0	4	г	2	132	242	
ES	0	0	0	1	0	3	19	1	1	0	0	0	0	-0	0	0	0	0	13	0	0	14	3	0	2	13	5	5	249	243	E5
FI	0	0	0	0	0	4	0	1	0	14	2	0	0	0	0	0	3	0	1	0	0	0	2	0	0	3	2	1	01	34	FI
FR	0	0	0	4	0	13	1	2	2	1	0	0	1	-0	0	0	1	0	9	2	0	8	20	0	1	11	(3	215	204	FR
GB	0	0	0	2	0	6	0	1	0	1	0	0	0	-0	0	0	2	0	10	2	0	0	17	0	0	10	11	0	105	99	GB
GE	0	0	0	0	0	4	0	8	2	23	0	0	0	0	5	68	18	4	0	0	3	1	0	22	0	6	1	19	226	23	GE
GL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	GL
GR	7	26	1	0	0	21	1	52	48	8	0	0	3	-0	0	13	31	0	1	1	2	49	1	1	4	7	4	24	604	428	GR
HR	4	2	0	1	0	39	1	32	57	3	0	4	6	-0	0	2	16	0	1	1	0	28	3	0	1	7	2	5	398	221	HR
HU	2	2	0	1	0	79	1	51	54	6	0	3	17	-0	0	3	34	0	1	2	0	9	4	1	1	7	2	4	444	301	HU
IE	0	0	0	1	0	4	0	1	0	1	0	0	0	-0	0	0	1	0	12	1	0	0	5	0	0	12	13	0	62	59	IE
IS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	6	6	0	6	4	IS
IT	3	3	1	1	0	19	2	12	19	1	0	2	3	0	0	1	5	0	2	0	0	57	2	0	3	9	4	15	325	256	IT
KG	0	0	0	0	0	0	0	0	0	7	0	0	0	8	2	4	1	190	0	0	0	0	0	17	0	7	0	20	629	1	KG
ΚΖT	0	0	0	0	0	3	0	2	1	79	0	0	0	0	2	3	12	15	0	0	0	0	0	7	0	5	0	6	371	9	KZT
LT	0	0	0	1	0	51	0	8	3	23	1	0	1	-0	0	3	23	0	1	14	0	1	7	1	0	5	3	2	194	124	LT
LU	0	0	0	9	0	26	1	4	1	2	0	0	2	-0	0	0	7	0	5	3	0	2	26	0	0	12	5	3	272	258	LU
LV	0	0	0	1	0	27	0	6	2	24	2	0	1	-0	0	3	19	0	1	14	0	1	7	1	0	4	3	2	146	82	LV
MD	1	2	0	0	0	57	0	102	14	25	0	0	5	0	0	9	134	1	0	2	4	4	2	2	1	6	2	5	455	234	MD
ME	59	11	0	0	0	17	1	35	95	3	0	1	3	0	0	3	12	0	1	1	0	29	2	0	3	7	2	15	461	177	ME
MK	10	48	0	0	0	21	1	53	93	5	0	1	3	0	0	5	19	0	1	1	1	19	1	0	3	7	2	18	567	331	MK
ΜТ	3	4	81	0	0	10	2	14	17	1	0	1	1	0	0	3	4	0	2	0	0	265	2	0	16	9	17	41	386	319	MT
NL	0	0	0	24	0	21	0	2	0	3	1	0	1	-0	0	0	7	0	6	8	0	1	76	0	0	12	10	2	232	218	NL
NO	0	0	0	0	2	2	0	0	0	2	1	0	0	0	0	0	1	0	1	2	0	0	4	0	0	3	3	0	22	12	NO
PL	0	0	0	2	0	160	0	12	9	9	1	1	5	-0	0	2	26	0	1	10	0	2	10	0	0	7	3	2	339	278	PL
РТ	0	0	0	1	0	2	70	1	1	0	0	0	0	-0	0	0	0	0	41	0	0	3	3	0	1	13	10	2	261	257	РТ
RO	3	4	0	0	0	52	0	219	41	13	0	1	8	-0	0	7	69	0	0	2	3	6	2	1	1	6	1	6	556	385	RO
RS	11	9	0	1	0	39	1	94	187	6	0	1	7	-0	0	3	28	0	1	1	1	14	2	1	2	7	2	10	606	275	RS
RUF	0	0	0	0	0	3	0	2	0	69	0	0	0	0	0	2	11	1	0	1	0	0	0	1	0	4	0	1	127	10	RUF
SF	0	0	0	1	1	5	0	1	0	5	4	0	0	-0	0	0	2	0	1	8	0	0	7	0	0	4	3	1	47	29	SF
SI	1	1	0	1	0	30	1	23	21	3	0	13	5	0	0	1	14	0	1	1	0	27	4	0	1	8	2	4	326	259	SI
SK	1	1	0	1	0	115	1	30	27	6	0	2	26	0	0	3	32	0	1	2	0	6	5	1	1	7	2	3	300	205	SK
ті	1	1	0	0	0	115	0	0		6	0	0	20	25	6	1	1	180	0	0	0	0	0	16	0	8	0	23	406	1	л. Т I
тм	0	0	0	0	0	2	0	2	1	20	0	0	0	25	22	16	7	61	0	0	0	0	0	20	0	6	0	15	200	0	тм
TD	1	2	0	0	0	10	0	22	0	16	0	0	1	2	1	220	25	1	0	0	5	12	0	10	2	0	2	13	209	00	TD
	1	2	0	0	0	51	0	23	9	10	0	0	2	0	1	220	165	1	0	2	2	12	2	19	2	5	2	21	206	90 127	
	1	1	0	0	0	51	0	33	1	40	0	0	0	U F	1	9	105	144	0	2	0	2	2	11	0	5	2	10	176	137	
	0	0	0	0	0	2	0	2	1	34	0	0	0	5	ð	ð 0	8	144	0	0	0	0	1	11	0	0	0	12	4/0	14	
AIL	0	0	0	1	0	1	0	0	1	10	0	0	1	0	0	0	0	0	5	0	0	0	12	0	0	9	8	0	18	14	AIL
BAS	0	0	0	1	1	21	0	3	1	12	3	0	1	-0	0	1	8	0	2	29	0	0	13	0	0	5	5	1	104	/4	BAS
BLS	1	2	0	0	0	28	0	46	10	53	U	0	2	0	1	45	125	1	0	1	21	5	1	6	1	6	6	(409	141	BLS
MED	4	6	2	0	0	14	2	22	22	5	0	1	2	0	0	49	1/	0	2	1	2	133	2	4	8	9	12	24	388	250	MED
NOS	0	0	0	2	1	7	0	1	0	2	0	0	0	0	0	0	2	0	5	4	0	0	35	0	0	7	13	0	78	71	NOS
AST	0	0	0	0	0	1	0	2	1	14	0	0	0	1	4	47	6	20	0	0	0	4	0	65	1	11	1	15	178	12	AST
NOA	2	4	2	0	0	5	2	10	9	2	0	0	1	0	0	15	.7	0	1	0	1	53	1	1	21	12	5	29	171	118	NOA
EXC	0	1	0	0	0	11	1	8	4	47	0	0	1	0	1	11	16	9	1	1	0	3	2	3	0	5	1	4	209	57	EXC
EU	1	2	0	2	0	31	4	22	10	6	1	1	2	-0	0	2	13	0	5	4	0	10	10	0	1	8	5	4	254	207	EU
	MF	MK	MT	NI	NO	PL	PT	RO	RS	RUE	SE	SL	SK	TΙ	ТΜ	TR	UA	117	ATI	BAS	BLS	MFD	NOS	AST	NOA	BIC	DMS	VOL	FXC	EU	

Table C.10: 2007 country-to-country blame matrices for **PM2.5**. Units: ng/m³ per 15% emis. red. of NO_x. **Emitters** \rightarrow , **Receptors** \downarrow . (Based on HIRLAM meteorology.)

	AL	AM	AT	ΑZ	ΒA	ΒE	BG	ΒY	СН	CY	CZ	DE	DK	EE	ES	FI	FR	GΒ	GE	GR	HR	ΗU	IE	IS	IT	KG	KZT	LT	LU	LV	MD	
AL	14	0	2	0	6	0	6	0	0	0	2	4	0	0	1	0	3	2	0	8	0	3	0	0	9	0	0	0	0	0	0	AL
AM	0	29	0	17	0	0	0	0	0	0	0	1	0	0	0	0	1	1	4	0	0	0	0	0	1	0	1	0	0	0	0	AM
AT	0	0	40	0	0	5	1	0	12	0	15	85	1	0	2	0	20	9	0	0	0	7	0	0	22	0	0	0	0	0	0	AT
AZ	0	12	0	40	0	0	0	0	0	0	0	1	0	0	0	0	1	1	9	0	0	0	0	0	1	0	3	0	0	0	0	AZ
BA	0	0	5	0	20	1	1	0	1	0	4	9	0	0	1	0	3	2	0	0	0	5	0	0	12	0	0	0	0	0	0	BA
BE	0	0	5	0	0	-2	0	0	2	0	7	58	3	0	3	0	52	35	0	0	0	1	3	0	2	0	0	0	1	0	0	BE
BG	1	0	1	0	2	0	23	1	0	0	1	3	0	0	1	0	1	1	0	4	0	2	0	0	2	0	0	0	0	0	1	BG
ΒY	0	0	2	0	0	1	1	9	1	0	3	10	2	1	0	2	4	5	0	0	0	2	0	0	1	0	2	2	0	1	0	ΒY
СН	0	0	14	0	0	7	0	0	66	0	6	109	0	0	3	0	65	10	0	0	0	1	0	0	43	0	0	0	1	0	0	СН
CY	0	0	0	0	0	-0	2	0	0	5	-0	-0	-0	0	0	0	0	-0	0	4	0	0	0	0	1	0	0	0	-0	0	0	CY
CZ	0	0	23	0	1	5	1	1	4	0	14	75	1	0	2	0	19	12	0	0	0	8	1	0	7	0	0	0	0	0	0	CZ
DE	0	0	11	0	0	9	0	1	7	0	10	89	3	0	2	0	35	21	0	0	0	2	1	0	4	0	0	0	1	0	0	DE
DK	0	0	1	0	0	3	0	1	0	0	2	18	7	0	0	0	7	11	0	0	0	1	1	0	0	0	0	1	0	0	0	DK
EE	0	0	0	0	0	0	0	2	0	0	0	1	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	1	0	1	0	EE
ES	0	0	1	0	0	3	0	0	1	0	1	7	0	0	61	0	25	6	0	0	0	0	0	0	3	0	0	0	0	0	0	ES
FI	0	0	0	0	0	0	0	0	0	0	0	0	-0	0	0	2		-0	0	0	2	0	0	0	0	0	0	0	-0	0	0	FI
FR	0	0	5	0	0	15	0	0	7	0	5	55	1	0	6	0	103	27	0	0	0	1	1	0	13	0	0	0	1	0	0	FR
GB	0	0	1	0	0	2	0	0	0	0	2	14	2	0	0	0	5	31	0	0	0	0	2	0	0	0	0	0	0	0	0	GB
GE	0	7	0	13	0	0	0	0	0	0	0	1	0	0	0	0	1	1	12	0	0	0	0	0	1	0	1	0	0	0	0	GE
GL	0	_0	0	-0	0	0	0	0	0	_0	0	0	0	0	0	0	0	0	_0	0	0	0	0	0	0	_0	0	0	0	0	0	GL
GR	2	-0	1	0	2	0	17	0	0	-0	1	2	0	0	1	0	1	1	-0	28	0	1	0	0	4	-0	0	0	0	0	0	GR
HR	0	0	0	0	2	1	1	0	1	0	6	14	0	0	1	0	1	3	0	20	0	5	0	0	24	0	0	0	0	0	0	HR
	0	0	9 14	0	0	2	2	1	2	0	12	26	1	0	1	0	4	5	0	1	0	- 5 - 72	0	0	16	0	0	0	0	0	0	
	0	0	14	0	4	2	2	1	2	0	12	20	1 2	0	1	0	5	/1	0	1	0	23	0	0	10	0	0	0	0	0	0	
	0	0	1	0	0	2	0	0	0	0	2	11	2	0	0	0	0	41	0	0	0	0	0	0	0	0	0	0	0	0	0	
із іт	0	0	12	0	0	-0	1	0	6	0	-0	10	0	0	0	0	12	2	0	1	0	2	0	0	0	0	0	0	0	0	0	і5 іт
	0	0	12	0	2	1	1	0	0	0	4	10	0	0	2	0	13	о О	0	1	0	о О	0	0	200	10	22	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	19	23	0	0	0	0	NG
κ <u>Ζ</u> Ι	0	0	1	0	0	0	0	0	0	0	0	10	0	1	1	1	0	1	0	0	0	1	0	0	1	1	27	0	0	0	0	NZ I
	0	0	1	0	0	10	0	0	0	0	3	12	2	1	1	1	5	4	0	0	0	1	0	0	1	0	1	3	0	2	0	
	0	0	0	0	0	10	0	0	4	0	9	69	1	1	3	1	02	22	0	0	0	1	2	0	4	-0	1	0	-1	1	0	
	0	0	1	0	1	1	0	5	0	0	1	5	1	1	1	1	2	1	0	0	0	1	0	0	0	0	1	3	0	1	0	
	0	0	2	0	12	1	4	3	1	0	3	8	1	0	1	1	3	4	0	1	0	4	0	0	3	0	1	1	0	1	5	
IVIE	3	0	3	0	13	0	4	0	1	0	2	5	0	0	1	0	3	2	0	4	0	4	0	0	9	0	0	0	0	0	0	NE
	4	0	2	0	4	0	14	0	0	0	2	4	0	0	1	0	2	2	0	11	0	3	0	0	0	0	0	0	0	0	0	
	0	0	0	0	1	-0	1	0	1	0	-0	-1	-0	-0	1	-0	1	-1	0	3	0	1	0	0	0	0	0	-0	-0	-0	0	
NL	0	0	3	0	0	8	0	0	1	0	5	65	6	0	2	0	34	31	0	0	0	1	2	0	1	0	0	0	1	0	0	NL
NO	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NO
PL	0	0	(0	1	2	0	3	1	0	10	28	3	0	1	1	9	8	0	0	0	4	1	0	3	0	0	1	0	1	0	PL
PT	0	0	0	0	0	1	0	0	0	0	0	2	0	0	31	0	9	2	0	0	0	0	0	0	1	0	0	0	0	0	0	PT
RO	0	0	4	0	2	1	(1	1	0	4	9	1	0	1	0	3	3	0	1	0	8	0	0	5	0	0	0	0	0	1	RO
RS	1	0	5	0	8	1	6	1	1	0	5	12	1	0	1	0	4	4	0	4	0	11	0	0	8	0	0	0	0	0	0	RS
RUE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	RUE
SE	0	0	0	0	0	0	0	0	0	0	0	2	1	0	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	SE
SI	0	0	31	0	2	2	1	0	5	0	13	40	1	0	1	0	10	6	0	1	0	8	0	0	67	0	0	0	0	0	0	SI
SK	0	0	13	0	2	2	1	1	2	0	13	25	1	0	1	0	7	6	0	0	0	19	0	0	9	0	0	0	0	0	0	SK
ТJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	12	0	0	0	0	ТJ
ТМ	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	0	0	0	0	ТМ
TR	0	2	0	1	0	0	3	0	0	0	0	1	0	0	0	0	1	1	1	2	0	0	0	0	1	0	0	0	0	0	0	TR
UA	0	0	2	0	0	1	1	3	0	0	2	6	1	0	0	1	2	3	0	0	0	3	0	0	1	0	2	1	0	0	1	UA
UZ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	2	23	0	0	0	0	UZ
ATL	0	0	0	0	0	0	0	0	0	0	0	1	0	0	-0	0	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	ATL
BAS	0	0	1	0	0	1	0	1	0	0	1	6	1	0	0	0	3	2	0	0	0	0	0	0	0	0	0	1	0	0	0	BAS
BLS	0	0	0	1	0	0	2	1	0	0	0	1	0	0	0	0	0	0	1	-0	0	0	0	0	-0	0	1	0	0	0	1	BLS
MED	0	0	1	0	1	0	3	0	0	0	0	1	-0	0	1	0	3	-0	0	4	0	0	0	0	11	0	0	0	0	0	0	MED
NOS	0	0	1	0	0	1	0	0	0	0	2	11	2	0	0	0	6	5	0	0	0	0	1	0	0	0	0	0	0	0	0	NOS
AST	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	6	0	0	0	0	AST
NOA	0	0	0	0	0	-0	1	0	0	0	0	-0	-0	0	0	0	0	-0	0	3	0	0	0	0	2	0	0	0	-0	0	0	NOA
EXC	0	0	1	0	0	1	1	1	1	0	1	6	0	0	2	0	5	3	0	0	0	1	0	0	4	0	6	0	0	0	0	EXC
EU	0	0	5	0	1	4	2	1	3	0	4	26	1	0	9	0	24	11	0	1	0	2	1	0	19	0	0	0	0	0	0	EU
	AL	AM	AT	ΑZ	ΒA	BE	ΒG	ΒY	СН	CY	CZ	DE	DK	EE	ES	FI	FR	GB	GE	GR	HR	ΗU	IE	IS	IT	KG	КZТ	LT	LU	LV	MD	

Table C.10 Cont.: 2007 country-to-country blame matrices for **PM2.5**. Units: ng/m³ per 15% emis. red. of NO_x. **Emitters** \rightarrow , **Receptors** \downarrow . (Based on HIRLAM meteorology.)

	ME	ΜК	мт	NI	NO	DI	рт	RO	PS	RHE	SE	SI	sĸ	тι	тм	ΤP	114	117	ΛTI	BVZ	RIS	MED	NOS	лст		RIC	DMS	VOI	FYC	FU	
			1011	1	110	I L			10	NOL 1	JL	1	1	1.7	1 101	1	07	02		073	DLJ		1105	7.31	NOA	DIC	01015	VUL	107	L0	
AL	0	4	0	1	0	4	0	5	19	1	0	1	1	0	0	1	2	0	1	0	0	0	1	0	0	5	0	0	107	53	AL
АМ	0	0	0	0	0	1	0	1	0	5	0	0	0	0	1	28	1	0	0	0	1	1	1	5	0	5	0	0	98	10	AM
AT	0	0	0	6	1	8	0	3	1	2	0	5	2	0	0	0	2	0	1	1	0	2	6	0	0	6	0	0	249	230	AT
AZ	0	0	0	0	0	2	0	1	0	13	0	0	0	0	1	11	2	1	0	0	1	0	1	5	0	4	0	0	102	9	ΑZ
BA	2	0	0	1	0	3	0	3	7	1	0	1	1	0	0	0	1	0	1	0	0	2	1	0	0	4	0	0	84	51	BA
BF	0	0	0	29	1	8	0	1	0	2	1	0	1	0	0	0	2	0	6	4	0	1	25	0	0	15	0	0	218	209	BF
PC	1	1	0		-	1	0	15	7	2	0	0	1	0	0	1	5	0	1		° c	1	1	0	0		0	0	00	E0	PC
DU	1	1	0	1	1	10	0	10	1		0	0	1	0	0	1	11	0	1	0	2	1	1	0	0	5	0	0	110	50	DU
DI	0	0	0	1	1	10	0	3	1	28	2	0	1	0	0	1	11	0	1	4	0	0	3	0	0	3	0	0	110	02	Dĭ
СН	0	0	0	(0	4	0	0	0	1	0	1	0	0	0	0	0	0	1	1	0	2	(0	0	6	0	0	343	274	СН
CY	0	0	0	-0	0	0	0	1	1	2	0	0	0	0	0	23	1	0	0	-0	1	9	-0	2	0	5	0	0	42	13	CY
CZ	0	0	0	7	1	14	0	2	1	4	1	2	4	0	0	0	3	0	2	3	0	1	8	0	0	8	0	0	216	199	CZ
DE	0	0	0	14	1	12	0	1	0	3	1	0	1	0	0	0	2	0	4	5	0	1	16	0	0	10	0	0	235	220	DE
DK	0	0	0	4	3	10	0	1	0	4	3	0	1	0	0	0	1	0	2	10	0	0	13	0	0	6	0	0	82	72	DK
FF	0	0	0	٥	0	3	0	٥	0	5	0	0	٥	0	0	0	2	0	٥	1	0	0	0	0	0	2	0	0	24	12	FF
	0	0	0	2	0	1	2	0	0	1	0	0	0	0	0	0	0	0	4	-	0	2	2	0	0	6	0	0	117	110	
E3	0	0	0	2	0	1	3	0	0	1	0	0	0	0	0	0	0	0	4	0	0	2	 	0	0	0	0	0	117	115	E3
FI	0	0	0	-0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	-0	0	0	1	0	0	9	3	FI
FR	0	0	0	12	1	5	0	0	0	2	1	0	0	0	0	0	1	0	4	2	0	2	21	0	0	8	0	0	268	256	FR
GB	0	0	0	6	1	5	0	0	0	2	1	0	0	0	0	0	1	0	4	3	0	0	11	0	0	6	0	0	78	73	GB
GE	0	0	0	0	0	1	0	1	0	10	0	0	0	0	0	16	1	0	0	0	1	0	0	2	0	3	0	0	70	7	GE
GL	0	-0	-0	0	0	0	-0	0	0	0	0	0	0	-0	-0	-0	0	-0	0	0	0	-0	0	-0	-0	0	0	0	0	0	GL
GR	1	3	0	0	0	1	0	6	5	1	0	0	0	0	0	2	2	0	1	0	1	5	0	0	0	5	0	0	83	64	GR
HR	1	0	0	1	0	3	0	4	5	1	0	2	2	0	0	0	1	0	1	1	0	3	2	0	0	4	0	0	99	80	HR
ш	1	0	0	2	1	16	0	1/	11	5	0	2	0	0	0	0	5	0	2	2	0	2	4	0	0	7	0	0	100	157	шп
110	1	0	0	-	1	10	0	14	11	1	1	0	0	0	0	0	1	0	-	2	0	2	7	0	0		0	0	109	137	
IE	0	0	0	5	1	3	0	0	0	1	1	0	0	0	0	0	1	0	5	2	0	0	1	0	0	4	0	0	04	00	IE
15	0	0	0	-0	0	-0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	0	0	0	0	0	0	0	15
IT	0	0	0	2	0	3	0	2	2	1	0	5	1	0	0	0	1	0	1	0	0	10	2	0	0	7	0	0	285	272	IT
KG	0	0	0	0	0	0	0	0	0	4	0	0	0	7	1	1	0	27	0	0	0	0	0	5	0	7	0	0	84	2	KG
KZT	0	0	0	0	0	1	0	0	0	32	0	0	0	0	1	0	1	2	0	0	0	0	0	2	0	4	0	0	70	5	KZT
LT	0	0	0	2	1	18	0	2	0	21	2	0	1	0	0	0	6	0	1	4	0	0	3	0	0	3	0	0	101	63	LT
LU	0	0	0	20	1	9	0	1	0	3	1	0	1	-0	0	0	1	0	5	2	0	1	15	0	0	12	0	0	241	231	LU
LV	0	0	0	1	0	7	0	1	0	16	1	0	0	0	0	0	4	0	1	2	0	0	1	0	0	2	0	0	57	30	LV
MD	0	0	0	1	1	16	0	35	3	17	1	0	2	0	0	1	31	0	1	3	2	1	3	0	0	5	0	0	158	93	MD
ME	14	1	0	0	0	-0	0	5	16	1	0	1	1	0	0	1	2	0	1	0	-	3	1	0 0	0	5	0	0	100	40	ME
MK	2	0	0	1	0	2	0	7	15	2	0	0	1	0	0	1	2	0	1	0	1	2	1	0	0	5	0	0	100	61	MK
MT	2	0	11	1	0	0	0	1	13	2	0	0	1	0	0	1	2	0	1	0	-		1	0	1	5	0	0	102	1	MT
	0	0	-11	-0	0	-0	0	1	1	0	-0	0	0	0	0	0	0	0	1	-0	0	-51	-0	0	1	5	0	0	5	1	
NL	0	0	0	14	1	11	0	1	0	3	2	0	1	0	0	0	2	0	(8	0	1	25	0	0	14	0	0	198	188	NL
NO	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	5	3	NO
ΡL	0	0	0	3	1	22	0	3	1	9	2	1	3	0	0	0	6	0	2	5	0	1	6	0	0	7	0	0	140	116	ΡL
ΡT	0	0	0	1	0	0	7	0	0	0	0	0	0	0	0	0	0	0	4	0	0	1	1	0	0	6	0	0	57	56	ΡT
RO	1	1	0	1	1	11	0	50	7	8	1	1	3	0	0	1	12	0	1	1	1	1	2	0	0	5	0	0	151	115	RO
RS	3	2	0	1	1	10	0	17	26	3	0	1	3	0	0	1	4	0	1	1	0	2	2	0	0	6	0	0	147	96	RS
RUF	0	0	0	0	0	0	0	0	0	17	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	25	3	RUF
SE	0	0	0	0	1	1	0	0	0	2	1	0	0	0	0	0	0	0	0	1	0	0	1	0	0	1	0	0	13	8	SE
SL CI	0	0	0	2	1	0	0	4	2	2	0	10	2	0	0	0	2	0	1	1	0	5	1	0	0	6	0	0	227	212	SL CI
51	0	0	0	3	1	0	0	4	-	2	0	12	2	0	0	0	2	0	1	1	0	5	4	0	0	0	0	0	221	215	51
SK	0	0	0	2	1	13	0	8	5	5	1	3	9	0	0	0	5	0	2	2	0	1	4	0	0	6	0	0	157	134	SK
ТJ	0	0	0	0	0	0	0	0	0	3	0	0	0	19	2	1	0	23	0	0	0	0	0	6	0	5	0	0	63	1	ТJ
ТМ	0	0	0	0	0	0	0	0	0	10	0	0	0	1	6	1	0	9	0	0	0	0	0	4	0	4	0	0	43	3	ТΜ
TR	0	0	0	0	0	1	0	2	1	3	0	0	0	0	0	51	2	0	0	0	1	2	0	2	0	5	0	0	76	14	ΤR
UA	0	0	0	1	1	12	0	10	1	23	1	0	1	0	0	1	20	0	1	2	1	0	2	0	0	4	0	0	104	50	UA
UZ	0	0	0	0	0	0	0	0	0	11	0	0	0	4	2	1	1	18	0	0	0	0	0	3	0	5	0	0	66	3	UZ
ATI	0	0	0	0	0	0	-0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	5	4	ATI
RAS	0	0	0	1	1	5	0	1	0	1	1	0	0	0	0	0	1	0	1	0	0	0	1	0	0	2	0	0	22	25	RAS
DIC	0	0	0	0	-	1	0	1	0	-	0	0	0	0	0	2	-	0	0	-0	2	0	-	0	0	2	0	0	25	25	DIC
BLS	0	-0	0	0	0	1	0	4	0	0	0	0	0	0	0	2	5	0	0	0	3	-0	0	0	0	3	0	0	25	8	BLS
IVIED	0	0	0	-0	0	-0	U	1	1	T	U	0	U	U	U	4	1	U	U	-0	U	-3	-0	U	U	4	U	U	30	21	IVIED
NOS	0	0	0	2	0	4	0	0	0	2	1	0	0	0	0	0	1	0	2	3	0	0	0	0	0	4	0	0	42	38	NOS
AST	0	0	0	0	0	0	0	0	0	4	0	0	0	1	1	8	0	3	0	0	0	1	0	18	0	5	0	0	28	2	AST
NOA	0	0	0	-0	0	-0	0	1	1	0	0	0	0	0	0	1	0	0	0	-0	0	2	-0	0	1	3	0	0	11	7	NOA
EXC	0	0	0	1	0	2	0	1	1	14	0	0	0	0	0	2	2	1	1	1	0	0	2	1	0	3	0	0	59	30	EXC
EU	0	0	0	5	1	6	1	4	1	3	1	1	1	0	0	0	2	0	2	2	0	2	7	0	0	6	0	0	142	129	EU
	ME	MK	ΜТ	NL	NO	ΡL	РΤ	RO	RS	RUE	SE	SI	SK	ТJ	ТΜ	TR	UA	υz	ATL	BAS	BLS	MED	NOS	AST	NOA	BIC	DMS	VOL	EXC	ΕU	

Table C.11: 2007 country-to-country blame matrices for **PM2.5**. Units: ng/m³ per 15% emis. red. of NH₃. **Emitters** \rightarrow , **Receptors** \downarrow . (Based on HIRLAM meteorology.)

	AL	AM	AT	ΑZ	BA	BE	BG	ΒY	СН	CY	CZ	DE	DK	EE	ES	FI	FR	GΒ	GE	GR	HR	HU	IE	IS	IT	KG	KZT	LT	LU	LV	MD	
AL	69	0	2	0	1	0	1	0	0	-0	1	3	0	0	0	0	0	0	0	10	0	3	0	0	7	0	0	0	0	0	0	AL
AM	0	11	0	5	-0	0	0	-0	0	-0	0	0	-0	-0	-0	-0	-0	0	1	-0	-0	0	0	-0	0	0	-0	-0	0	-0	0	AM
AT	0	0	56	0	0	3	0	0	8	-0	13	71	1	0	0	0	9	2	0	0	0	4	0	0	15	0	0	0	0	0	0	AT
AZ	-0	3	0	26	-0	-0	0	-0	0	-0	-0	0	-0	-0	-0	-0	-0	-0	3	-0	-0	-0	-0	-0	0	0	1	-0	0	-0	0	AZ
BA	1	0	7	0	45	0	0	0	1	-0	5	12	1	0	0	0	1	1	0	0	0	14	0	0	14	-0	0	0	0	0	0	ΒA
BE	0	0	3	0	0	113	0	0	1	-0	2	62	2	0	1	-0	54	25	0	0	-0	0	2	0	1	-0	0	0	3	0	0	BE
BG	2	0	2	0	1	0	49	1	0	0	1	4	0	0	0	0	0	0	0	10	0	6	0	0	3	0	0	0	0	0	2	BG
ΒY	0	0	2	0	0	1	0	55	1	-0	6	15	1	0	0	0	3	1	0	0	0	3	0	0	1	0	4	3	0	1	1	ΒY
СН	0	0	4	0	0	4	0	0	62	-0	3	60	0	0	1	-0	30	3	0	0	-0	0	0	0	28	-0	0	0	1	0	0	СН
CY	0	0	0	0	0	0	1	0	0	22	0	0	-0	-0	0	-0	0	0	0	2	-0	0	-0	-0	1	0	0	-0	0	-0	0	CY
C7	0	0	17	-0	0	3	0	1	3	0	72	87	2	0	1	0	10	4	0	0	0	5	1	0	5	-0	0	0	0	0	0	C7
DE	0	0	5	0	0	10	0	1	4	-0	7	155	4	0	1	0	22	9	0	0	-0	1	1	0	2	-0	0	0	1	0	0	DE
DK	_0	0	1	0	_0	3	0	1	0	0	2	23	54	0	0	_0	6	5	0	0	_0	0	0	0	0	_0	0	1	0	0	0	DK
FF	0	0	0	0	0	0	0	5	0	0	1	6	1	16	0	1	1	0	0	0	0	0	0	0	0	0	1	1	0	5	0	FF
	-0	0	1	0	0	2	-0	0	1	0	0	6	0	10	01	0	20	2	0	-0	0	0	0	0	2	-0	0	-	0	0	0	
	0	0	1	0	0	2	0	1	1	-0	0	0	0	1	04	10	29	2	0	0	-0 2	0	0	0	2	-0	0	0	0	0	0	
	-0	0	2	0	-0	14	-0	1	5	-0	2	41	1	1	2	10	120	14	-0	-0	2	0	1	0	10	-0	0	0	1	0	0	
	0	0	1	0	0	14	0	0	5	-0	1	41	1	0	د ٥	-0	129	14	0	0	-0	0	1	0	10	-0	0	0	1	0	0	
GB	0	0	1	0	0	4	0	0	0	0	1	21	2	0	0	-0	8	81	11	0	-0	0	2	0	0	-0	0	0	0	0	0	GB
GE	0	2	0	4	0	0	0	0	0	-0	0	0	-0	-0	-0	-0	-0	-0	11	0	-0	0	0	-0	0	0	-0	-0	0	-0	0	GE
GL	-0	0	0	0	-0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	GL
GR	5	0	1	0	1	0	12	0	0	0	1	2	0	0	1	0	0	0	0	59	0	2	0	0	5	-0	0	0	0	0	0	GR
HR	0	0	15	0	11	0	0	0	1	0	8	17	1	0	1	0	2	1	0	0	0	23	0	0	34	0	0	0	0	0	0	HR
HU	0	-0	15	-0	1	1	0	1	2	-0	12	24	1	0	-0	0	3	2	-0	0	0	99	0	0	12	0	0	0	0	0	0	ΗU
IE	0	0	1	0	0	2	0	0	0	0	1	14	2	0	0	0	7	33	0	0	0	0	33	0	0	-0	0	0	0	0	0	IE
IS	-0	-0	0	-0	-0	0	-0	0	0	-0	0	0	0	-0	0	0	0	0	-0	-0	0	0	0	1	0	-0	0	0	0	0	-0	IS
IT	0	0	6	0	1	0	0	0	4	0	2	11	0	-0	1	-0	5	1	0	0	0	1	0	0 1	167	-0	0	0	0	0	0	IT
KG	0	0	0	0	0	-0	0	0	0	0	0	0	-0	-0	0	-0	-0	-0	0	0	-0	0	-0	-0	0	40	24	0	-0	-0	0	KG
KZT	0	0	0	0	-0	0	0	0	0	0	0	0	-0	-0	0	0	0	-0	0	0	0	0	-0	-0	0	1	60	0	0	0	0	KZT
LT	0	-0	1	-0	0	1	0	14	1	-0	5	21	3	0	0	0	4	1	-0	0	-0	1	0	0	1	-0	2	29	0	3	0	LT
LU	0	0	3	0	0	54	0	0	2	-0	3	81	1	0	1	0	63	13	0	0	-0	0	1	0	2	-0	0	0	25	0	0	LU
LV	0	-0	1	-0	0	1	0	12	0	-0	2	15	2	2	0	0	2	1	-0	0	0	1	0	-0	1	-0	1	13	0	16	0	LV
MD	0	0	1	0	0	0	3	3	0	-0	2	4	1	0	-0	-0	0	0	0	0	-0	4	0	0	1	0	2	0	0	0	46	MD
ME	8	0	3	0	7	0	1	0	0	-0	2	6	0	0	0	0	1	1	0	2	0	6	0	0	7	0	-0	0	0	0	0	ME
MK	14	0	2	0	1	0	6	0	0	0	1	4	0	0	0	0	0	0	0	28	0	5	0	0	4	0	0	0	0	0	0	MK
MT	0	-0	0	-0	0	-0	0	0	0	0	0	0	0	-0	2	-0	0	-0	-0	1	-0	0	-0	-0	15	0	-0	0	0	0	0	MT
NL	0	0	2	0	0	25	0	1	1	0	2	70	5	0	0	-0	26	24	0	0	-0	0	2	0	1	-0	0	0	0	0	0	NL
NO	-0	0	0	0	-0	0	0	0	0	0	0	2	1	0	0	0	0	1	0	-0	2	0	0	0	0	0	0	0	0	0	0	NO
ΡL	0	-0	4	-0	0	1	0	3	1	-0	14	42	5	0	0	0	6	2	-0	0	-0	4	0	0	3	-0	1	1	0	0	0	ΡL
ΡT	-0	0	0	-0	-0	1	0	0	0	-0	0	2	0	0	38	-0	11	1	0	-0	-0	0	0	0	0	-0	0	0	0	0	0	РΤ
RO	1	0	3	0	1	0	4	1	1	-0	3	8	1	0	0	-0	1	1	0	1	0	18	0	0	4	0	0	0	0	0	3	RO
RS	3	0	5	-0	5	0	2	0	0	-0	5	11	1	0	0	0	1	1	0	3	0	25	0	0	5	0	0	0	0	0	0	RS
RUE	0	0	0	0	0	0	0	1	0	-0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0	RUE
SE	-0	0	0	0	-0	0	-0	1	0	0	0	4	3	0	0	1	1	1	0	-0	2	0	0	0	0	-0	0	1	0	0	0	SE
SI	0	0	30	-0	1	1	0	0	3	-0	8	30	0	0	0	0	4	2	-0	0	0	7	0	0	64	0	0	0	0	0	0	SI
SK	0	0	12	0	1	1	0	1	2	-0	19	30	2	0	0	0	3	2	0	0	0	31	0	0	7	0	0	0	0	0	0	SK
ТJ	0	0	0	0	0	-0	0	-0	0	0	0	0	-0	-0	0	-0	-0	-0	0	0	-0	0	-0	-0	0	4	9	-0	-0	-0	0	ТJ
ТМ	0	0	0	0	-0	0	0	0	0	0	0	0	-0	-0	0	-0	-0	-0	0	0	-0	0	-0	0	0	1	16	-0	0	-0	0	ТМ
TR	0	0	0	0	0	0	2	0	0	0	0	1	0	-0	0	-0	0	0	0	1	-0	0	0	0	1	-0	0	0	0	0	0	TR
UA	0	0	1	0	0	0	1	7	1	0	3	6	1	0	0	0	1	0	0	0	0	5	0	0	1	0	3	1	0	0	4	UA
117	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	0	-0	0	-0	0	0	-0	0	-0	0	0	4	35	0	0	-0	0	117
	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	3	-0	0	0	-0	0	0	0	0	0	0	0	0	0	0	
RAS	_0	.0	1	.0	n	1	n	2	n	_0	1	10	0	1	۰ ۲	2	с С	2 2	n 0	_0	n	n	0	0	0	_0	0	2	n	о 2	0	RAS
BIC	-0	-0	U T	-0	0	0	5	3 1	0	-U 0	U T	79 19	9	U T	0	∠ ∩	2 0	2 0	1	-0	0	1	0	0	1	-U 0	1	с 0	0	2 0	0 2	BIC
DL3	1	0	1	0	1	0	ე ე	U T	1	1	0	2	0	0	0	-0	0 6	0	U T	с Т	0	1	0	0	1 21	0	1	0	0	0	2	DL3
	T	0	1	0	1	0	2	1	T	T	1	2	U 7	0	ŏ	-0	10	0	0	5	0	T	1	0	21 ^	-0	0	0	0	0	0	
ACT	0	0	1	1	0	5	0	Ţ	0	0	1	24	1	0	0	0	13	20	0	0	0	0	T	0	0	0	U F	0	0	0	0	ACT
ASI	1	0	0	1	0	U	1	0	0	0	0	U	-0	-0	0	-0	1	-0	0	0	-0	0	-0	-0	0	0	5	0	0	-0	0	ASI
	1	0	U I	0	0	U 1	T	0	0	0	1	U -7	U	-0	2	-0	1	0	0	2	U	U 1	0	0	4	-0	10	0	0	0	0	NUA
	0	U	1	0	0	1	0	1	1	0	1	1	0	0	2	0	5	2	0	0	0	1	U 7	U	3	1	12	0	0	U Q	0	EXC
ΕU	0	0	4	0	0	5	2	1	2	0	5	31	2	0	11	1	26	9	0	2	0	5	1	U	15	-0	0	1	0	0	0	ΕU
	AL	AM	AT	ΑZ	ВA	ВE	ВĞ	ΒY	CH	CΥ	CZ	DE	DΚ	ΕE	ЕS	FL	FК	GB	GE	GR	НR	НU	IE	15	1 E	КĠ	κZΤ	LT	LU	LV	MD	

Table C.11 Cont.: 2007 country-to-country blame matrices for **PM2.5**. Units: ng/m³ per 15% emis. red. of NH₃. **Emitters** \rightarrow , **Receptors** \downarrow . (Based on HIRLAM meteorology.)

	ME	MK	MT	NL	NO	ΡL	PΤ	RO	RS	RUE	SE	SI	SK	ТJ	ТΜ	ΤR	UA	UZ	ATL	BAS	BLS	MED	NOS	AST	NOA	BIC	DMS	VOL	EXC	EU	
AL	5	4	0	0	0	4	-0	3	15	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	133	38	AL
AM	0	0	-0	0	-0	-0	-0	0	0	-0	-0	0	0	-0	-0	10	-0	-0	0	0	0	0	0	2	-0	0	0	0	26	0	AM
AT	0	0	-0	4	0	7	-0	1	0	0	0	5	3	0	-0	-0	1	-0	0	0	0	0	0	-0	0	0	0	0	205	195	AT
AZ	-0	0	0	-0	-0	-0	-0	-0	-0	2	-0	0	-0	0	0	4	-0	0	0	0	0	0	0	1	-0	0	0	0	38	-0	AZ
BA	3	0	0	1	0	7	-0	4	12	0	0	2	5	-0	-0	0	1	-0	0	0	0	0	0	0	0	0	0	0	139	76	BA
BF	0	0	-0	57	0	4	-0	1	0	1	0	0	1	-0	0	0	1	0	0	0	0	0	0	-0	0	0	0	0	336	332	BF
BG	1	3	0	0	0	4	0	41	19	2	0	0	2	0	-0	1	6	-0	0	0	0	0	0	0 0	0	0	0	0	164	127	BG
BV	0	0	0	1	0	35	0	1	10	11	1	0	2	0	-0	1	17	-0	0	0	0	0	0	0	0	0	0	0	171	127 91	BV
	0	0	0	5	0	33 2	0	4	0	11	0	0	0	-0	0	0	11	0	0	0	0	0	0	0	0	0	0	0	205	142	
CII	0	0	0	0	0	2	-0	1	0	0	0	0	0	-0	-0	-0	0	-0	0	0	0	0	0	-0	0	0	0	0	205	142	CI
C1 C7	0	0	0	0	-0	-0	0	1	1	1	-0	0	0	0	-0	40	0	-0	0	0	0	0	0	2	0	0	0	0	15	21	CT
CZ	0	0	-0	1	0	24	-0	2	1	1	0	2	8	-0	-0	0	2	-0	0	0	0	0	0	-0	0	0	0	0	258	250	CZ
DE	0	0	-0	21	0	8	-0	1	0	1	1	0	1	-0	0	0	1	0	0	0	0	0	0	-0	0	0	0	0	255	248	DE
DK	-0	-0	-0	(1	11	0	1	-0	1	4	0	1	-0	0	0	1	0	0	0	0	0	0	-0	0	0	0	0	133	128	DK
EE	-0	-0	-0	1	0	8	0	1	0	8	1	0	0	-0	0	0	1	0	0	0	0	0	0	-0	0	0	0	0	63	47	EE
ES	0	0	0	2	0	0	1	0	0	0	0	0	0	-0	-0	0	0	-0	0	0	0	0	0	-0	0	0	0	0	130	129	ES
FI	-0	-0	-0	0	0	0	0	0	0	3	0	0	0	-0	-0	0	1	-0	-0	-0	-0	-0	-0	-0	0	0	0	0	21	13	FI
FR	0	0	0	12	0	2	-0	0	0	0	0	0	0	-0	-0	-0	0	-0	0	0	0	0	0	-0	0	0	0	0	248	242	FR
GB	0	0	-0	10	0	4	-0	0	0	1	0	0	0	-0	0	0	1	0	-0	-0	-0	-0	-0	0	0	0	0	0	139	136	GB
GE	0	0	-0	0	-0	-0	-0	0	0	2	-0	0	0	0	-0	7	0	-0	0	0	0	0	0	0	0	0	0	0	26	1	GE
GL	-0	-0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	GL
GR	1	3	0	0	0	2	0	6	6	1	0	0	1	-0	0	2	2	0	0	0	0	0	0	0	1	0	0	0	116	93	GR
HR	1	0	0	1	0	9	-0	4	10	0	0	10	6	0	-0	0	1	-0	0	0	0	0	0	0	0	0	0	0	160	134	HR
HU	0	0	-0	2	0	21	-0	10	9	0	1	5	25	-0	-0	-0	2	-0	0	0	0	0	0	-0	0	0	0	0	249	233	ΗU
IE	0	0	-0	5	0	3	-0	0	0	0	0	0	0	-0	-0	0	1	0	0	0	0	0	0	0	0	0	0	0	104	102	IE
IS	-0	-0	0	0	0	0	0	-0	-0	0	0	0	0	-0	-0	-0	-0	-0	0	0	0	0	0	-0	0	0	0	0	2	0	IS
IT	0	0	0	1	0	2	-0	1	0	0	0	3	1	-0	-0	0	0	-0	0	0	0	0	0	-0	0	0	0	0	209	203	IT
KG	0	0	0	-0	-0	-0	0	0	0	0	-0	0	0	10	0	0	0	31	0	0	0	0	0	6	0	0	0	0	106	0	KG
K7T	0	0	0	0	_0	0	_0	0	0	14	-0	0	0	10	0	0	0	2	0	0	0	0	0	3	0	0	0	0	78	1	K7T
11	0	0	0	2	-0	18	-0	1	0	7	1	0	1	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	152	124	11
111	0	0	-0	30	0	40	0	1	0	0	0	0	1	-0	-0	-0	1	0	0	0	0	0	0	-0	0	0	0	0	288	284	111
	0	0	-0	1	0	- -	-0	1	0	0	1	0	1	-0	0	0	2	0	0	0	0	0	0	-0	0	0	0	0	105	204	
	0	-0	0	1	0	12	0	16	2	0 E	1	0	2	-0	-0	-0	20	-0	0	0	0	0	0	-0	0	0	0	0	105	01	
	40	1	0	0	0	13	-0	40	17	5	0	1	Э	0	-0	1	30	0	0	0	0	0	0	0	-0	0	0	0	119	20	
	42	1	0	0	0	4	-0	3	17	0	0	1	3	0	-0	0	1	-0	0	0	0	0	0	0	0	0	0	0	115	39	
IVIK	1	41	0	0	0	4	-0	1	29	0	0	0	2	0	-0	0	1	0	0	0	0	0	0	0	0	0	0	0	157	80	IVIK
	0	0	57	0	-0	-0	-0	0	0	0	-0	0	-0	0	-0	0	-0	-0	0	0	0	0	0	0	1	0	0	0	70	/5	IVI I
NL	0	0	-0	122	0	5	-0	1	0	1	1	0	1	-0	0	0	1	0	-0	-0	-0	-0	-0	-0	0	0	0	0	289	285	NL
NO	-0	-0	-0	0	3	1	0	0	-0	0	1	0	0	0	-0	0	0	0	0	0	0	0	0	-0	0	0	0	0	13	7	NO
PL	0	0	-0	3	0	102	-0	2	1	1	1	1	5	-0	-0	-0	3	-0	0	0	0	0	0	-0	0	0	0	0	209	198	PL
PT	-0	-0	-0	1	0	0	35	0	-0	0	0	0	0	-0	-0	-0	0	-0	0	0	0	0	0	-0	0	0	0	0	91	90	PT
RO	0	0	0	1	0	10	-0	100	9	2	0	1	6	-0	-0	0	10	-0	0	0	0	0	0	0	0	0	0	0	191	162	RO
RS	2	2	0	1	0	9	-0	21	88	0	0	1	7	0	-0	0	1	-0	0	0	0	0	0	-0	0	0	0	0	202	98	RS
RUE	0	0	0	0	0	1	0	0	0	31	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	43	2	RUE
SE	-0	-0	-0	1	1	2	0	0	0	0	8	0	0	-0	-0	0	0	0	0	0	0	0	0	-0	0	0	0	0	29	24	SE
SI	0	0	0	2	0	7	-0	2	1	0	0	51	3	0	-0	0	0	-0	0	0	0	0	0	-0	0	0	0	0	219	213	SI
SK	0	0	0	2	0	42	-0	6	3	1	1	3	66	0	0	0	3	-0	0	0	0	0	0	0	0	0	0	0	239	227	SK
ТJ	0	0	0	-0	-0	-0	0	0	0	0	-0	0	-0	32	1	0	-0	22	0	0	0	0	0	7	0	0	0	0	68	0	ТJ
ТМ	0	0	0	-0	-0	-0	-0	0	-0	2	-0	0	0	1	16	1	0	11	0	0	0	0	0	2	0	0	0	0	48	0	ТМ
TR	0	0	0	0	0	1	0	3	1	1	0	0	0	0	-0	73	2	-0	0	0	0	0	0	2	0	0	0	0	89	10	TR
UA	0	0	0	1	0	19	-0	13	1	17	0	0	3	0	0	1	85	0	0	0	0	0	0	0	0	0	0	0	178	58	UA
UZ	0	0	-0	0	-0	0	-0	0	0	3	-0	0	0	6	2	0	0	41	0	0	0	0	0	3	0	0	0	0	92	0	UZ
ATL	0	0	-0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	-0	-0	-0	-0	0	0	1	0	0	10	9	ATL
BAS	-0	-0	-0	2	0	14	0	1	0	2	6	0	0	-0	-0	0	1	0	0	0	0	0	0	-0	0	0	0	0	74	66	BAS
BLS	0	0 0	0	0	0	2	0	13	1	11	ñ	n	1	0	0	6	10	0 0	n	0	n	0	0	Ő	0	0 0	0	0	71	27	BIS
MED	n	n	n	n	n	ے م	n	20	1	1	n	n	۰ ۱	n	n	a	1	n	n	n	n	0	n	1	2	n	n	n	67	-' 52	MED
	0	0	.0	10	1	Б Б	_0	0	<u>۰</u>	1	1	n	n	.0	n	0	1	n	۰ ۱	0	0 0	0	0	0	<u>د</u>	n	0	0	02	0/	NOS
Δςτ	0	0	-0	10	.0	.0	0	n	0	1	-0	n N	0	-0	1	1	U L	1	-0 0	-0	U -D	-0	-0	11	0	1	0	0	1/	بر ۱	Δςτ
	0	0	0	0	-0	-0	0	1	1	0 1	-0	0	0	0 T	л Т	4 2	0	U T	0	0	0	0	0	14	11	1	0	0	14	10	
EVC	0	0	0	1	0	1	0	1 1	1	17	0	0 A	1	-0	0	2	1	0 n	0	0	0	0	0	1	11	U L	0	0	11	24	EVC
	0	0	0	L L	0	4 10	1	2	7	1	1	1	1 2	0	0	С	4	2	0	0	0	0	0	1	0	0	0	0	10	150	EII
EU	U	U	U	0	U	13	L L	ŏ	2				ک دیر	-U T י	-U	U	1	-0	U 471	U	U		U	U	U	U			101	152	EU
	IVIE	IVIK	IVI I	NL	NΟ	۲L	РΙ	ĸО	ĸъ	κυε	SE	21	SK	IJ	I M	ıк	UΑ	UΖ	AIL	BAS	RF2	NED	INOS	AST	INUA	ЫC	DIVIS	VUL	EXC	ΕU	

Table C.12: 2007 country-to-country blame matrices for **PM2.5**. Units: ng/m³ per 15% emis. red. of VOC. **Emitters** \rightarrow , **Receptors** \downarrow . (Based on HIRLAM meteorol-

Units: ng/m³ per 15% emis. red. of VOC. Emitters \rightarrow , Receptors \downarrow . (Based on HIRLAM meteorology.)

	AL	AM	AT	ΑZ	ΒA	ΒE	BG	ΒY	СН	CY	CZ	DE	DK	EE	ES	FI	FR	GΒ	GE	GR	HR	HU	IE	IS	IT	KG	KZT	LT	LU	LV	MD	
AL	-1	0	-0	-0	-1	0	-0	0	0	0	-0	0	0	0	0	0	1	0	-0	-1	0	-0	0	0	-0	0	0	0	0	0	-0	AL
AM	-0	2	-0	-3	-0	-0	-0	-0	-0	-0	0	-0	-0	-0	-0	-0	-0	-0	-1	-0	-0	-0	-0	-0	-0	-0	-0	-0	0	-0	0	AM
AT	0	0	2	-0	-0	0	-0	0	-0	0	0	0	0	0	0	0	2	0	0	0	0	-0	0	0	1	0	0	0	0	0	-0	AT
ΑZ	-0	-0	-0	-7	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	0	-0	-0	-0	-2	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	ΑZ
BA	0	0	0	0	-2	0	-0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	-0	0	0	0	0	0	-0	BA
BE	0	0	0	0	0	8	0	1	0	0	1	24	1	0	1	0	10	17	0	0	0	0	1	0	1	0	0	0	0	0	0	BE
BG	0	0	0	-0	-0	0	0	0	0	0	0	1	0	0	0	0	1	1	-0	-0	0	0	0	0	1	0	0	0	0	0	-0	BG
ΒY	-0	-0	0	-0	-0	0	-0	1	0	0	0	1	0	0	0	0	0	0	-0	-0	0	0	0	0	0	0	-0	0	0	0	0	ΒY
СН	0	0	-0	0	-0	0	-0	0	-2	0	0	-6	0	0	-0	0	-1	-0	0	0	0	-0	0	0	-2	0	0	0	0	0	0	CH
CY	-0	0	0	-0	-0	0	-0	0	0	-0	0	1	0	0	0	0	0	0	-0	-1	0	0	0	0	0	0	-0	0	0	0	0	CY
CZ	0	0	1	0	0	1	-0	0	0	0	2	10	0	0	1	0	4	2	0	0	0	0	0	0	2	0	0	0	0	0	-0	CZ
DE	0	0	1	0	0	2	0	0	0	0	1	14	1	0	1	0	5	5	0	0	0	0	0	0	1	0	0	0	0	0	0	DE
DK	0	0	0	0	0	1	0	0	0	0	0	3	2	0	0	0	2	2	0	0	0	0	0	0	1	0	0	0	0	0	0	DK
EE	0	-0	0	-0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	-0	0	0	0	0	0	0	0	-0	0	0	0	0	EE
ES	0	0	-0	0	-0	0	0	0	-0	0	-0	-0	0	0	2	0	0	1	0	0	0	-0	0	0	0	0	0	0	0	0	0	ES
FI	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	0	0	FI
FR	0	0	-0	0	-0	1	0	0	0	0	0	2	0	0	0	0	4	4	0	0	0	-0	0	0	-0	0	0	0	0	0	0	FR
GB	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	1	6	0	0	0	0	0	0	0	0	0	0	0	0	0	GB
GE	-0	-0	-0	-3	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-3	-0	-0	-0	-0	-0	-0	-0	-0	-0	0	-0	-0	GE
GL	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	GL
GR	-0	0	0	-0	-0	0	-2	0	0	-0	0	0	0	0	0	0	1	0	-0	-2	0	-0	0	0	0	0	-0	0	0	0	-0	GR
HR	0	0	0	-0	-1	0	-0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	1	0	0	0	0	0	-0	HR
ΗU	0	0	1	-0	-0	0	-0	0	0	0	1	3	0	0	0	0	1	1	-0	0	0	1	0	0	2	0	0	0	0	0	-0	ΗU
IE	0	0	0	0	0	0	0	0	0	0	-0	0	-0	0	0	0	0	-0	0	0	0	-0	0	0	0	0	0	0	0	0	-0	IE
IS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	0	0	0	0	0	0	0	0	-0	0	-0	0	0	-0	0	0	IS
IT	-0	0	0	0	-0	0	-0	0	0	0	0	-0	0	0	1	0	1	0	0	-0	0	-0	0	0	9	0	0	0	0	0	0	IT
KG	0	-0	0	-0	0	0	0	0	0	-0	0	0	0	0	0	0	0	0	-0	0	0	0	0	0	0	-0	-0	0	0	0	0	KG
KZT	0	-0	0	-0	0	0	0	-0	0	0	0	0	0	-0	0	0	0	0	-0	0	0	0	0	0	0	0	0	-0	0	-0	-0	KZT
LI	0	0	0	-0	-0	0	-0	0	0	0	0	2	0	0	0	0	1	1	-0	0	0	0	0	0	1	0	-0	0	0	0	0	
LU	0	0	-0	0	0	4	0	0	0	0	0	14	1	0	1	0	8	9	0	0	0	-0	0	0	1	-0	0	0	1	0	0	LU
	-0	-0	0	-0	-0	0	-0	0	0	0	0	1	0	0	0	0	1	1	-0	0	0	0	0	0	0	0	-0	0	0	0	0	
	0	-0	0	-0	1	0	-0	-0	0	0	0	0	0	0	0	0	0	0	-0	-0	0	0	0	0	0	0	-0	0	0	0	0	
	-0	0	-0	-0	-1	0	-0	-0	-0	0	-0	0	0	0	0	0	0	0	-0	-0	0	-0	0	0	-0	0	0	0	0	0	-0	
MT	-0	0-	0-	-0	-0	0	-1	0	0	0	0	1	0	0	2	0	1	1	-0	-1	0	0-	0	0	2	0	0	0	0	0	-0	MT
NI	-0	0	0	0	-0	5	0	0	0	0	0	17	1	0	1	0	10	14	0	0	0	0	1	0	1	0	0	0	0	0	0	NI
NO	0	-0	0	-0	0	0	-0	0	0	-0	0	0	0	0	0	0	10	0	-0	-0	0	0	0	0	0	-0	-0	0	0	0	0	NO
PI	0	0	1	0	0	0	0	0	0	0	1	6	1	0	0	0	2	2	0	0	0	0	0	0	1	0	0	0	0	0	0	PI
PT	0	0	0	0	-0	0	0	0	-0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	PT
RO	0	-0	0	-0	-0	0	-0	-0	0	0	0	1	0	0	0	0	1	0	-0	-0	0	0	0	0	1	0	0	0	0	0	-0	RO
RS	0	0	0	-0	-1	0	-0	0	0	0	0	1	0	0	0	0	1	1	-0	-0	0	1	0	0	0	0	0	0	0	0	-0	RS
RUE	0	-0	0	-0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	0	0	0	0	0	0	0	0	0	0	0	0	RUE
SE	0	0	0	0	0	0	0	0	0	-0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	SE
SI	0	0	0	-0	-0	0	-0	0	-0	0	-0	-2	0	0	1	0	1	0	0	0	0	-0	0	0	5	0	-0	0	0	0	-0	SI
SK	0	0	1	-0	-0	0	-0	-0	0	0	1	4	0	0	0	0	2	1	0	0	0	0	0	0	1	0	0	0	0	0	-0	SK
ТJ	0	-0	0	-0	0	0	0	-0	0	-0	0	0	0	-0	0	-0	0	0	-0	0	-0	0	0	-0	0	-0	-0	-0	0	-0	-0	ТJ
ТМ	-0	-0	0	-0	0	0	0	-0	0	-0	0	0	0	-0	0	-0	0	0	-0	-0	-0	0	0	-0	0	0	-0	-0	0	-0	-0	ТМ
TR	-0	-0	0	-0	-0	0	-0	-0	0	-0	0	0	0	0	0	0	0	0	-0	-0	0	-0	0	0	0	0	-0	-0	0	0	-0	TR
UA	0	-0	0	-0	-0	0	-0	0	0	0	0	1	0	0	0	0	0	0	-0	0	0	0	0	0	0	0	-0	0	0	0	-0	UA
UZ	0	-0	0	-0	0	0	0	-0	0	-0	0	0	0	-0	0	-0	0	0	-0	0	0	0	0	0	0	0	-0	-0	0	-0	-0	UZ
ATL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	0	-0	0	0	0	0	0	ATL
BAS	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	BAS
BLS	0	-0	0	-0	0	0	-0	-0	0	-0	0	1	0	0	0	0	1	0	-0	0	0	0	0	0	1	0	-0	0	0	0	-0	BLS
MED	-0	0	0	-0	-0	0	-0	0	0	-0	0	1	0	0	1	0	1	0	-0	-1	0	-0	0	0	0	0	-0	0	0	0	-0	MED
NOS	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	1	3	0	0	0	0	0	0	0	0	0	0	0	0	0	NOS
AST	-0	-0	0	-0	-0	0	-0	-0	0	-0	0	0	0	-0	0	-0	0	0	-0	-0	-0	0	0	-0	0	-0	-0	-0	0	-0	-0	AST
NOA	-0	0	0	-0	-0	0	-0	0	0	-0	0	0	0	0	0	0	0	0	-0	-0	0	-0	0	0	0	0	-0	0	0	0	-0	NOA
EXC	-0	-0	0	-0	-0	0	-0	0	0	-0	0	1	0	0	0	0	0	0	-0	-0	0	0	0	0	0	0	0	0	0	0	0	EXC
EU	0	0	0	0	-0	0	-0	0	0	-0	0	3	0	0	1	0	2	2	0	-0	0	0	0	0	1	0	0	0	0	0	0	EU
	AL	AM	AT	ΑZ	ΒA	BE	ΒG	ΒY	CH	CY	CZ	DE	DK	EE	ES	FI	FR	GB	GE	GR	HR	ΗU	IE	IS	IT	KG	κΖT	LT	LU	LV	MD	

Table C.12 Cont.: 2007 country-to-country blame matrices for **PM2.5**. Units: ng/m³ per 15% emis. red. of VOC. **Emitters** \rightarrow , **Receptors** \downarrow . (Based on HIRLAM meteorology.)

	ME	MK	МΤ	NL	NO	ΡL	РΤ	RO	RS	RUE	SE	SI	SK	ТJ	ТМ	TR	UA	UZ	ATL	BAS	BLS	MED	NOS	AST	NOA	BIC	DMS	VOL	EXC	EU	
AL	-1	-0	-0	0	0	-0	0	-1	-2	0	0	-0	-0	0	0	0	0	0	0	0	0	-0	0	0	-0	-7	0	0	-4	-0	AL
AM	-0	-0	-0	-0	-0	-0	-0	-0	-0	-1	-0	-0	-0	-0	-0	-1	-0	-0	-0	-0	-0	-0	-0	-0	-0	-13	0	0	-5	-1	AM
AT	0	0	0	0	0	0	0	-0	-0	0	0	-0	-0	0	0	0	0	0	0	0	0	0	0	0	-0	-6	0	0	6	6	AT
AZ	-0	-0	-0	-0	-0	-0	0	-0	-0	-1	-0	-0	-0	-0	-0	-1	-0	-0	-0	0	-0	-0	-0	-0	-0	-11	0	0	-12	-1	AZ
BA	-0	0	0	0	0	1	0	-0	-1	0	0	0	0	0	0	0	0	0	0	0	-0	0	0	0	-0	-4	0	0	1	2	BA
BE	0	0	0	8	1	3	0	0	0	4	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	11	0	0	84	78	BE
BG	0	0	0	0	0	0	0	-1	-0	1	0	0	0	0	0	0	0	0	0	0	-0	0	0	0	-0	-5	0	0	6	4	BG
BY	0	0	0	0	0	1	0	0	0	2	0	0	0	0	-0	0	0	0	0	0	-0	0	0	-0	0	-2	0	0	7	5	BY
СН	0	-0	0	-0	0	0	0	-0	-0	- 1	0	-0	-0	0	0	0	0	0	0	0	0	0	0	0	-0	-6	0	0	-8	-8	СН
CY	-0	-0	0	0	0	0	0	-0	-0	0	0	0	0	0	-0	-3	0	0	0	0	-0	-0	0	-0	-0	-11	0	0	-3	0	CY
C7	0	0	0	1	0	2	0	_0	0	1	0	0	_0	0	0	0	0	0	0	0	0	0	0	0	0	_0	0	0	30	27	C7
DE	0	0	0	2	0	2	0	0	0	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	40	36	DE
DK	0	0	0	1	1	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	17	14	DK
FF	0	0	0	0	1	1	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	5	74	FF
	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	-0	0	0	0	0	0	0	0	-0	-0	-1	0	0	1	2	
	0	0	0	0	0	0	-0	0	0	0	0	0	-0	0	0	0	0	0	0	0	0	0	0	0	-0	-0	0	0	4	1	
	0	0	0	1	0	1	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	0	0	16	12	
	0	0	0	1	0	1	0	0	0	1	0	-0	-0	0	0	0	0	0	0	0	0	0	0	0	0	-2	0	0	16	10	
GD	0	0	0	1	0	1	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	10	13	GD
GE	-0	-0	-0	-0	-0	-0	-0	-0	-0	-1	-0	-0	-0	-0	-0	-1	-0	-0	-0	-0	-0	-0	-0	-0	-0	-9	0	0	-9	-1	GE
GL	-0	-0	0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	-0	0	0	-0	-0	GL
GR	-0	-0	-0	0	0	0	0	-1	-0	1	0	0	0	0	0	0	0	0	0	0	-0	-0	0	0	-0	-7	0	0	-2	-2	GR
нк	-0	0	0	0	0	1	0	-1	-1	0	0	0	0	0	0	0	0	0	0	0	-0	0	0	0	-0	-3	0	0	5	5	нк
HU	0	0	0	0	0	2	0	-1	-0	0	0	0	0	0	0	0	-0	0	0	0	0	0	0	0	-0	-3	0	0	14	14	HU
IE	0	0	0	0	0	0	0	-0	0	0	0	0	-0	0	0	0	0	0	0	0	0	0	0	0	0	-3	0	0	1	1	IE
15	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	0	0	0	-0	-0	0	0	0	0	0	0	-0	0	0	0	0	15
11	-0	0	0	0	0	0	0	-0	-0	1	0	0	-0	0	0	0	0	0	0	0	0	0	0	0	0	-1	0	0	14	13	11
KG	0	0	0	0	0	0	0	0	0	-0	0	0	0	-0	-0	-0	0	-1	0	0	0	0	0	-1	-0	-15	0	0	-3	0	KG
KZT	0	0	0	0	-0	-0	-0	-0	0	-0	0	0	0	0	-0	0	-0	0	0	0	0	0	0	0	-0	-8	0	0	-0	0	KZT
LT	0	0	0	0	0	1	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	0	-1	0	0	10	7	LT
LU	0	0	0	4	0	2	0	-0	0	2	1	0	-0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	49	46	LU
LV	-0	0	0	0	0	0	0	-0	0	1	0	0	0	0	-0	-0	0	0	0	0	0	0	0	-0	-0	-1	0	0	6	4	LV
MD	0	0	0	0	0	-0	0	1	0	1	0	0	0	0	-0	0	-0	-0	0	0	-0	0	0	-0	-0	-7	0	0	4	3	MD
ME	-1	-0	-0	0	0	-0	0	-1	-2	0	0	-0	-0	0	0	0	-0	0	0	0	-0	0	0	0	-0	-7	0	0	-6	-1	ME
MK	-0	-0	0	0	0	-0	0	-1	-1	0	0	-0	-0	0	0	0	0	0	0	0	-0	0	0	0	-0	-7	0	0	-3	-1	MK
ΜT	-0	-0	0	0	0	0	0	-0	-0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	-2	0	0	7	7	MT
NL	0	0	0	9	1	2	0	0	0	4	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	9	0	0	70	64	NL
NO	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	-0	-0	0	-0	0	0	-0	0	0	-0	-0	-0	0	0	1	0	NO
ΡL	0	0	0	1	0	4	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	25	21	PL
ΡT	0	0	0	0	0	0	-0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	-6	0	0	3	2	ΡT
RO	0	0	0	0	0	0	0	-1	0	0	0	0	0	0	0	0	-0	0	0	0	-0	0	0	0	0	-6	0	0	5	4	RO
RS	-0	0	0	0	0	1	0	-2	-0	0	0	0	0	0	0	0	-0	0	0	0	-0	0	0	0	-0	-6	0	0	3	3	RS
RUE	0	0	0	0	0	0	0	0	0	1	0	0	0	0	-0	0	0	0	0	0	0	0	0	0	0	-1	0	0	2	1	RUE
SE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	0	0	2	2	SE
SI	-0	0	0	0	0	0	0	-1	-0	0	0	0	-0	0	0	0	0	0	0	0	-0	0	0	0	-0	-5	0	0	5	5	SI
SK	-0	0	0	0	0	2	0	-0	-0	0	0	0	0	0	0	0	-0	0	0	0	0	0	0	0	0	-2	0	0	15	14	SK
ТJ	0	0	-0	0	-0	0	0	0	0	-0	0	0	0	-1	-0	-0	-0	-1	0	0	-0	0	0	-1	-0	-8	0	0	-2	0	ТJ
ТМ	0	0	0	0	-0	-0	0	-0	0	-1	0	0	0	0	-0	-0	-0	-0	0	0	-0	-0	0	-0	-0	-9	0	0	-3	0	ТΜ
TR	-0	-0	0	0	0	-0	0	-0	-0	-0	0	0	-0	0	-0	-1	-0	-0	0	0	-0	-0	0	-0	-0	-11	0	0	-3	-0	TR
UA	0	0	0	0	0	0	0	0	0	1	0	0	0	0	-0	0	0	0	0	0	-0	0	0	-0	-0	-4	0	0	5	3	UA
UZ	0	0	0	0	-0	-0	0	-0	0	-1	0	0	0	0	-0	-0	0	1	0	0	0	0	0	-0	-0	-9	0	0	1	0	UZ
ATL	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	0	0	0	-0	-0	0	0	0	0	0	0	-1	0	0	0	0	ATL
BAS	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8	6	BAS
BLS	0	0	0	0	0	-0	0	-0	0	1	0	0	0	0	-0	0	-1	0	0	0	-0	0	0	-0	-0	-3	0	0	4	3	BLS
MED	-0	-0	-0	0	0	0	0	-0	-0	0	0	0	0	0	0	-0	0	0	0	0	-0	-0	0	-0	-0	-4	0	0	2	2	MED
NOS	0	0	0	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	12	11	NOS
AST	-0	-0	-0	0	-0	-0	0	-0	-0	-0	0	0	0	-0	-0	-1	-0	-0	0	0	-0	-0	0	-3	-0	-10	0	0	-2	0	AST
NOA	-0	-0	-0	0	0	0	0	-0	-0	0	0	0	-0	0	0	-0	-0	0	0	0	-0	-0	0	-0	-0	-3	0	0	1	1	NOA
EXC	-0	0	0	0	0	0	0	-0	-0	1	0	0	0	0	-0	-0	0	0	0	0	-0	0	0	-0	-0	-3	0	0	3	3	EXC
EU	0	0	0	1	0	1	0	-0	-0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-2	0	0	13	11	EU
	ME	MK	мт	NL	NO	ΡL	ΡТ	RO	RS	RUE	SE	SI	SK	ТJ	тм	TR	UA	UZ	ATL	BAS	BLS	MED	NOS	AST	NOA	BIC	DMS	VOL	EXC	EU	

Table C.13: 2007 country-to-country blame matrices for **PM2.5**. Units: ng/m³ per 15% emis. red. of PPM, SO_x, NO_x, NH₃ and VOC. **Emitters** \rightarrow , **Receptors** \downarrow . (Based on HIRLAM meteorology.)

AL AM AT AZ BA BE BG BY CH CY CZ DE DK EE ES FI FR GB GE GR HR HU IE IS IT KG KZT LT LU LV MD 2 -6 107 -6 AL 164 -6 0 -6 65 -4 65 -5 1 -6 4 11 -5 -6 15 -5 7 7 -5 0 53 -6 -5 -5 0 -6 -4 AL 0 0 0 0 23 -0 AM 0 52 0 77 1 3 0 1 2 0 1 0 1 1 9 2 -0 1 -0 0 1 0 0 -0 0 AM -0 168 -0 7 12 27 -0 53 218 1 -0 13 0 57 17 -0 -0 17 1 0 68 -0 0 -0 AT -0 6 1 1 0 1 0 AT ΑZ -1 17 -1 170 0 -1 2 -0 0 -1 -0 1 -1 -1 -0 -1 0 1 14 1 -1 -0 -1 0 0 -0 52 -1 0 -1 -0 ΑZ 19 -2 -2 14 -2 31 ΒA 1 -3 15 -2 295 0 16 -2 2 -3 35 -1 17 5 7 -2 -2 0 62 -3 -2 -2 0 -2 -1 ΒA BE -9 -9 -9 316 -9 -8 4 -9 9 219 -1 -9 10 -9 260 127 -9 -4 -9 -4 -1 0 -4 -9 -8 6 -9 -7 BE -9 -1 -8 ΒG 32 0 495 2 1 -1 9 16 -0 -1 7 -1 6 3 -1 48 -1 16 -1 0 15 4 -0 0 -1 BG Δ -1 Δ -1 -1 3 ΒY -1 -0 4 2 7 127 2 -1 16 38 5 6 4 12 10 -1 2 7 -0 0 4 0 4 2 BY -1 5 3 1 -1 12 13 0 194 -0 0 CH -0 -0 24 -0 4 18 2 -0 17 222 1 25 180 19 -0 1 0 2 1 0 102 -0 -0 0 2 -0 -0 CH CY -7 -8 -8 -7 -0 -9 35 -8 0 53 -7 -6 -9 _9 -2 -9 -6 -3 -8 49 -9 -5 -9 0 1 _9 -4 -9 0 _9 -6 CY CZ -2 -2 57 -2 13 2 -2 206 256 3 -2 9 -1 59 27 -2 0 -2 20 0 0 21 -2 -1 -1 1 -2 -1 CZ 5 1 10 -4 10 -4 129 -5 -2 -4 DF -5 -5 18 -5 -3 34 -3 -2 15 -5 34 449 8 57 0 -1 0 7 -5 -4 -3 3 -4 -3 DE 64 147 -9 DK -11 -11 -9 -11 -11 -1 -11 -8 0 -11 -4 -8 -10 14 45 -11 -5 -11 -7 -9 0 -10 -11 -10 -8 0 -10 -8 DK -1 -2 12 2 97 -1 17 3 -2 -0 -0 -1 0 -2 8 0 14 EE -2 -2 -1 -2 0 11 0 1 7 -1 2 -1 EE -1 1 ES -1 -1 1 -1 2 6 0 -1 2 -1 2 19 -0 -1 429 -1 85 15 -1 1 -1 0 0 0 10 -1 -1 -1 0 -1 -1 ES -0 -0 2 0 -0 0 0 7 -0 60 -0 -0 13 -0 0 -0 FI -0 -0 -0 -0 -0 2 1 4 -0 -0 1 1 0 1 -0 FI FR -3 -3 6 -3 0 45 -1 -2 16 -3 10 134 -0 -3 51 -3 521 71 -3 -1 -3 -1 1 0 32 -3 -3 -2 4 -3 -2 FR GΒ -12 -12 -10 -12 -12 -2 -12 -11 1 -12 -6 36 -6 -12 -9 -12 14 244 -12 -6 -12 -8 0 0 -11 -12 -11 -12 0 -12 -9 GΒ GE -0 11 0 60 2 0 6 0 0 0 1 2 0 0 1 0 1 1 44 2 -0 1 -0 0 1 0 22 -0 0 -0 0 GE GL -0 -0 -0 -0 -0 -0 -0 -0 0 -0 -0 0 -0 -0 0 -0 0 0 -0 -0 0 -0 -0 0 -0 -0 0 -0 0 -0 -0 GL GR 11 -7 -4 -7 28 -6 218 -6 1 -7 -1 4 -7 -7 8 -7 1 -1 -7 291 -7 3 -7 0 26 -7 -3 -7 0 -7 -4 GR -2 -4 -2 -3 3 -4 46 HR -2 -4 32 -4 117 -0 11 4 28 51 -4 18 18 7 -4 -3 0 119 -4 -3 -3 0 -4 -2 HR -2 3 -2 228 ΗU -1 -2 45 -2 43 3 13 2 5 -2 52 81 1 -2 10 -1 22 13 -1 0 53 -2 -1 -1 0 -2 -0 HU IF -10 -10 -8 -10 -9 -4 -9 -9 1 -10 -6 22 -6 -9 -8 -9 9 104 -10 -5 -9 -7 67 0 -9 -10 -9 _9 0 -9 -7 IE IS 0 -1 -1 -1 -1 0 IS -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 -1 -1 -1 4 -1 -1 -1 -1 -1 -1 -1 -1 IT -2 -4 21 -4 34 -0 7 -4 14 -4 10 41 -3 -4 40 -4 48 5 -4 7 -4 5 -4 0 630 -4 -4 -4 0 -4 -3 IT 0 0 0 0 0 0 0 KG KG 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 362 278 0 0 0 0 K7T -0 0 0 0 0 0 -0 0 0 0 0 0 0 0 -0 0 0 25 393 0 0 -0 0 K7T 1 1 1 1 1 1 1 0 2 -1 2 4 2 35 -1 13 49 8 8 2 4 15 13 -1 1 -0 3 -1 0 3 5 76 0 13 -0 LT -1 -1 1 -1 LT -6 -5 130 -5 8 -6 21 263 -1 -5 18 -5 503 74 -6 -2 -1 3 -5 100 -5 LU -6 -6 5 -4 -5 -0 0 -6 -5 -4 LU LV -2 -2 -0 -2 0 2 1 26 1 -2 4 30 4 19 -0 6 7 9 -2 0 -0 1 -1 0 0 -2 4 28 0 53 -1 LV MD 0 -1 4 0 11 1 36 11 1 -1 13 21 3 1 5 1 7 7 -0 8 -0 14 -0 0 8 9 2 0 0 103 MD -1 -3 -3 28 -3 ME 22 6 -3 116 -2 35 -3 1 -3 8 18 -3 -3 14 -3 9 3 13 -3 0 49 -3 -3 -3 0 -3 -2 ME -1 -2 11 -2 3 -2 143 -2 13 MK 34 -2 4 -2 47 -1 170 -1 1 -2 8 16 7 -2 0 28 -2 -0 -2 0 -2 -1 MK -8 -10 25 -1 -10 -10 52 -10 16 -2 -10 24 -10 -5 -10 0 133 -10 MT -7 -10 -9 12 -10 1 -10 -5 -10 -10 0 -10 -7 MT _9 75 2 -15 -1 221 -2 -14 118 122 -15 -7 -14 -9 -7 0 -11 -15 NI -15 -15 -15 -15 -15 -13 1 -14 -14 -14 2 -15 -11 NL NO -2 -2 -2 -2 -2 -1 -1 -1 0 -2 -1 2 1 -1 -1 0 -0 6 -2 -1 6 -1 -1 0 -2 -2 -1 -1 0 -1 -1 NO 50 119 -1 0 -2 -2 -2 13 -0 5 -0 29 22 -2 0 -2 ΡI ΡI -2 13 5 5 1 10 4 13 10 -2 0 4 1 -1 -1 PΤ -1 -1 -1 -1 2 -1 -1 1 -1 -0 8 -1 -1 267 -1 39 9 -1 -0 -1 -1 -0 0 1 -1 -1 0 -1 -1 PT 1 -1 RO 1 -1 8 -0 28 1 66 4 2 -1 18 29 2 0 6 0 9 6 -1 11 -1 43 -1 0 18 -1 3 0 0 -1 RO 7 -0 39 -2 22 -1 RS 8 -2 13 -1 100 1 56 2 -2 23 0 -1 12 -1 12 8 58 -1 0 34 -2 0 -1 0 -2 0 RS RUE -0 -0 0 1 0 0 1 2 0 -0 1 2 0 1 0 2 1 1 0 0 1 0 -0 0 0 1 47 0 0 0 0 RUE SF -2 -2 -2 -2 -2 -1 -2 1 0 -2 -1 9 6 1 -1 4 2 9 -2 -1 13 -1 -1 0 -2 -2 -1 0 0 -1 -1 SF -3 -2 -2 31 11 -3 -2 0 249 SI -2 -3 89 -3 23 4 8 -1 11 37 97 -1 18 1 -2 23 -3 -2 -2 0 -2 -2 SI SK -1 -2 38 -1 22 4 6 4 6 -2 72 89 3 -1 8 -1 23 14 -1 2 -1 88 -0 0 31 -2 -1 0 0 -1 -0 SK 0 0 ΤI 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76 165 0 0 0 0 ТJ ТΜ -0 1 0 4 1 0 2 0 0 0 0 1 -0 0 1 0 1 0 0 1 0 0 -0 0 1 14 174 0 0 -0 0 ΤМ TR 3 4 -2 35 -1 0 -0 0 2 -2 -2 1 -2 0 0 -1 19 -2 1 -2 0 2 -2 5 -2 TR -1 1 -1 0 -2 -1 1 -1 10 2 1 -1 4 -0 -1 0 4 17 2 9 UA UA -1 -1 3 6 1 16 18 1 20 1 3 6 6 12 -1 0 -0 324 UZ -0 0 0 2 0 1 0 0 -0 0 1 0 0 1 0 1 1 0 1 0 0 -0 0 1 64 0 0 -0 0 UΖ 1 ATL -5 -5 -5 -5 -5 -4 -5 -5 0 -5 -4 -2 -5 -5 0 -5 4 6 -5 -2 -4 -4 -3 0 -5 -5 -5 -5 0 -5 -4 ATL -5 -4 BAS -5 -5 -4 -5 -4 -0 -4 1 0 -5 0 36 19 5 -3 10 6 15 -2 -2 -2 -4 0 -5 -3 1 0 -0 -4 BAS BLS -2 -2 -2 4 3 -2 47 2 0 -3 2 5 -2 -2 0 -2 0 1 1 10 -3 2 -3 0 1 -3 12 -2 0 -3 3 BLS MED -6 -11 -7 -10 20 -9 42 -10 2 -8 -5 2 -10 -11 59 -11 28 -2 -11 52 -11 -4 -10 0 86 -11 -8 -11 0 -11 -7 MED -2 -15 -13 -16 21 81 -16 NOS -16 -16 -15 -16 -16 -5 -16 -14 1 -16 -12 33 -8 -16 -11 -12 0 -15 -16 -15 -15 0 -16 -12 NOS AST -1 -0 -1 4 -0 -1 2 -1 0 0 -1 -1 -1 -1 -0 -1 -1 -0 -1 2 -1 -1 -1 0 -0 16 71 -1 0 -1 -1 AST -1 NOA 1 -2 -1 -1 9 -1 26 -1 0 -1 0 3 -1 -1 29 -1 9 0 31 -2 0 -1 0 24 -2 0 -1 0 -2 -1 NOA FXC -0 -1 2 1 3 2 7 3 2 -1 4 20 1 1 13 1 20 8 -0 3 0 3 -0 0 12 7 82 0 0 -0 0 EXC 6 13 22 0 6 -3 17 91 3 -0 68 3 102 39 -3 10 -0 10 0 0 57 -2 -0 EU -2 -3 10 -3 -3 1 -2 -2 EU AL AM AT AZ BA BE BG BY CH CY CZ DE DK EE ES FI FR GB GE GR HR HU IE IS IT KG KZT LT LU LV MD

Table C.13 Cont.: 2007 country-to-country blame matrices for **PM2.5**. Units: ng/m³ per 15% emis. red. of PPM, SO_x, NO_x, NH₃ and VOC. **Emitters** \rightarrow , **Receptors** \downarrow . (Based on HIRLAM meteorology.)

	ME	MK	MT	NL	NO	ΡL	ΡT	RO	RS	RUE	SE	SI	SK	ТJ	ТΜ	TR	UA	UZ	ATL	BAS	BLS	MED	NOS	AST	NOA	BIC	DMS	VOL	EXC	EU	
AL	36	53	-5	-4	1	21	-4	41	150	-1	-5	2	3	-6	-6	0	12	-6	-4	-5	-5	62	-3	-5	2	6	3	23	697	275	AL
AM	0	0	-0	0	0	3	-0	5	1	19	0	0	0	-0	7	156	9	6	0	0	1	2	1	56	1	-1	0	21	384	22	AM
AT	0	0	-0	12	1	57	1	18	10	5	1	17	13	-0	-0	1	14	-0	2	2	-0	8	12	-0	1	9	1	3	815	752	AT
AZ	-1	-0	-1	-1	0	3	-1	4	0	52	-1	0	-0	-1	12	71	13	11	-0	-0	0	0	-0	46	-0	-1	0	16	409	2	AZ
ΒA	18	2	-2	0	1	42	-1	42	115	3	-2	5	13	-3	-3	1	17	-2	-1	-1	-2	24	2	-2	1	7	2	7	733	304	BA
BE	-9	-7	-9	125	3	28	-8	-5	-8	-0	-6	1	-4	-9	-9	-9	1	-9	5	0	-9	-8	94	-9	-5	38	8	2	859	1000	BE
BG	6	16	-1	-0	1	41	-0	207	97	23	-0	1	9	-1	-1	14	81	-1	-0	0	7	12	1	-0	2	7	2	10	1148	871	BG
BY	-0	0	-1	2	3	137	-1	19	5	83	4	1	8	-1	-1	5	92	-0	1	11	-0	1	7	0	-0	6	2	2	635	306	BY
СН	0	0	-0	14	1	21	2	4	3	2	0	1	2	-0	-0	0	2	-0	3	2	-0	8	14	-0	1	10	2	3	864	659	CH
CY	-7	-2	_9	_0	0	1	-8	16	6	9	_0	0	-5	_9	_9	516	28	-8	-8	-8	-4	76	-8	23	0	4	10	32	475	17	CY
C7	-2	-1	-2	16	2	147	-1	15	g	8	0	7	29	-2	-2	-0	24	-2	2	5	-2	2	17	-2	-1	17	2	2	914	877	C7
DE	-5	_3	-5	47	2	66	_4	2	_2	5	_1	1	0	-5	-5	_4	7	-5	2	13	-5	_2	43	-5	_2	24	5	2	705	833	DE
	11	-5	11	5	11	3/	11	2	11	1	-1	1	7	11	11	10	2	11	5	13	11	11	57	-J 11	-2	15	10	1	155	163	
EE	-11	-0	-11	0	21	26	-11	-0 2	-11	E0	5	0	-1	-11	-11	-10	20	-11	-5	25	-11	-11	6	-11	-0	15	20	2	261	103	
	-2	-1	-2	4	2	20	-2	2	-1	50	0	0	-0	-2	-2	2	20	-2	-0	25	-2	-1	7	-1	-1	14	5	2	617	620	
E3	-0	-0	-1	4	0	4	40	0	1	22	-0	0	0	-1	-1	-0	-0	-1	20	-0	-1	19	,	-1	2	14	5	5 1	105	020	E3
	-0	-0	-0	-0	3	5 10	-0	0	-0	23	0	1	-0	-0	-0	0	4	-0	10	1	-0	-0	2	-0	-0	17	2	1	125	83	
FK	-3	-2	-3	28	1	19	-0	-0	-0	1	-2	1	-1	-3	-3	-3	-0	-3	12	1	-3	8	44	-3	-1	1/	1	3	870	900	FR
GB	-12	-9	-12	8	2	5	-12	-10	-12	-1	-10	0	-8	-12	-12	-12	-1	-12	6	-1	-12	-12	25	-12	-6	16	11	0	-80	125	GB
GE	0	0	-0	0	0	5	-0	9	2	43	0	0	0	-0	6	107	22	5	0	0	4	1	0	27	0	1	1	19	354	29	GE
GL	-0	-0	-0	-0	0	-0	-0	-0	-0	0	-0	0	-0	-0	-0	-0	-0	-0	0	-0	-0	-0	-0	-0	-0	10	0	0	-0	-0	GL
GR	2	33	-7	-7	0	19	-6	60	59	5	-7	1	-0	-7	-7	18	34	-7	-6	-7	-4	58	-6	-7	1	6	4	24	664	543	GR
HR	3	-1	-4	0	1	54	-2	39	78	2	-3	22	16	-4	-4	-1	17	-4	-2	-2	-3	33	2	-3	-0	9	2	5	617	436	HR
ΗU	1	1	-2	3	2	132	-1	81	84	11	-0	15	84	-2	-2	2	48	-2	0	2	-2	11	7	-2	-0	12	2	4	1006	827	HU
IE	-10	-7	-10	1	1	2	-9	-8	-9	-8	-8	0	-6	-10	-10	-9	-6	-10	12	-6	-10	-9	4	-10	-5	12	13	0	-113	54	IE
IS	-1	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	1	-1	-1	-1	-1	-1	-1	7	6	0	-42	-24	IS
IT	-1	0	-4	-1	0	22	-1	10	18	-2	-4	12	2	-4	-4	-3	3	-4	-1	-3	-4	76	0	-4	2	16	4	15	841	823	IT
KG	0	0	-0	0	0	0	0	0	0	12	0	0	0	32	4	5	2	325	0	0	0	0	0	30	0	-0	0	20	1026	4	KG
KZT	-0	0	-0	0	0	4	-0	2	1	150	0	0	0	1	4	4	16	26	0	1	0	0	0	13	0	1	0	6	636	13	KZT
LT	-1	-1	-1	4	4	136	-1	11	3	65	6	1	3	-1	-1	3	39	-1	1	21	-1	0	11	-0	-0	7	3	2	516	370	LT
LU	-6	-4	-6	66	2	38	-4	0	-4	1	-3	1	-1	-6	-6	-5	5	-6	4	0	-6	-3	43	-6	-3	30	5	3	1098	1172	LU
LV	-2	-1	-2	2	3	63	-2	6	1	57	5	0	1	-2	-2	2	30	-1	-0	19	-2	-1	7	-1	-1	5	3	2	340	234	LV
MD	1	2	-1	1	2	96	-0	220	20	54	2	1	13	-1	-0	13	272	0	1	4	6	4	4	1	0	4	2	5	957	460	MD
ME	157	12	-3	-2	1	23	-2	42	142	1	-3	2	6	-3	-3	1	13	-3	-2	-2	-3	34	-1	-3	2	5	2	15	656	223	ME
ΜК	14	139	-2	-1	1	29	-1	69	157	6	-2	2	6	-2	-2	5	24	-2	-1	-1	-1	23	0	-2	2	5	2	18	893	487	МК
мт	-6	-2	140	-10	0	0	-6	6	9	-9	-10	1	-6	-10	-10	-6	-5	-10	-7	-10	-10	315	-8	-10	15	12	17	41	148	254	МТ
NI	-15	-11	-15	252	4	27	-14	-11	-14	-4	-11	1	_9	-15	-15	-14	-2	-15	-0	3	-15	-14	131	-15	-7	36	10	2	384	625	NI
NO	-2	-1	-2	-1	29	2	-2	-1	-1	2	1	0	-1	-2	-2	-1	-1	-2	1	1	-2	-2	4	-2	-1	4	3	0	3	-10	NO
PI	-2	-1	-2	7	4	403	-2	17	10	21	4	3	19	-2	-2	1	44	-2	1	16	-2	1	16	-2	-1	15	3	2	804	730	PI
PT	-2	-1	-2	1	0	105	402	-1	-0	-1	-1	0	-1	-2	-2	-1	-1	-2	57	-1	-2	2	10	-2	-1	14	10	2	608	716	PT
RU	-1	-1 5	-1	1	1	83	102	161	66	25	1	2	2/	-1	-1	-1	115	1	0	2	-1	7	2	-1	1	6	10	6	1053	780	RO
DC	10	16	-1	1	1	64	-0	142	200	25	1	2	24	-1	-1	2	27	-1	0	2	1	16	1	1	1	7	2	10	1033	F01	
DUE	19	10	-2	1	1	04 E	-1	145	209	160	-1	0	23	-2	-2	ა ე	16	-2	0	1	-1	10	4	-1	1	1	2	10	247	15	DUE
CE	-0	-0	-0	0	10	0	-0	2	1	100	20	0	1	-0 2	2	2	10	1	0	10	2	0	0	2	-0	4	2	1	61	10	CE
SE	-2	-1	-2	0	12	0 E0	-2	-1	-1	2	20	124	-1	-2	-2	-1	16	-2	0	10	-2	-2	9	-2	-1	10	ა ე	1	01	50 772	SE
21	-1	-1	-3	4	1	50	-1	21	24	3	-2	124	11	-3	-3	-1	10	-3	-0	-0	-2	34	0	-2	-0	10	2	4	071	051	21
SK	0	0	-2	4	2	206	-1	45	31	11	1	10	213	-2	-1	2	49	-1	1	3	-1	6	8	-1	-0	11	2	3	9/1	851	SK
1J 	0	0	-0	0	0	0	0	0	0	11	0	0	0	125	10	5	2	288	0	0	0	0	0	43	0	5	0	23	686	3	IJ
ΤM	0	0	-0	0	0	2	-0	2	1	48	0	0	0	5	82	19	8	114	0	0	0	1	0	39	0	2	0	15	484	11	ΤM
TR	-1	1	-2	-2	0	10	-2	28	9	22	-2	0	0	-2	-1	458	45	-1	-1	-1	6	15	-1	24	1	2	2	27	616	79	TR
UA	-0	0	-1	1	2	94	-1	61	10	103	1	1	11	-1	-0	14	447	0	0	4	3	2	3	2	-0	5	2	4	878	256	UA
UZ	0	0	-0	0	0	3	0	2	1	57	0	0	0	23	21	10	10	322	0	0	0	0	0	22	0	2	0	12	848	12	UZ
ATL	-5	-4	-5	-4	0	-4	-3	-5	-5	-2	-5	0	-4	-5	-5	-5	-4	-5	3	-5	-5	-5	-3	-5	-2	11	8	0	-167	-82	ATL
BAS	-5	-4	-5	0	6	43	-5	-1	-4	19	16	0	-2	-5	-5	-4	8	-5	-3	43	-5	-5	13	-5	-2	8	5	1	74	110	BAS
BLS	-2	-0	-3	-2	1	31	-3	67	10	89	-2	0	1	-3	-2	88	192	-1	-2	-1	30	3	-1	4	-1	6	6	7	524	137	BLS
MED	-6	-0	-8	-10	0	5	-6	16	16	-3	-10	2	-5	-11	-11	68	12	-11	-8	-10	-8	165	-8	-5	7	9	12	24	146	153	MED
NOS	-16	-12	-16	3	7	2	-16	-15	-16	-10	-13	0	-11	-16	-16	-16	-12	-16	-7	-8	-16	-16	45	-16	-8	12	13	0	-399	-120	NOS
AST	-1	-0	-1	-1	0	1	-1	1	-0	21	-1	0	-1	3	7	64	6	28	-1	-1	-1	4	-1	114	0	6	1	15	204	-10	AST
NOA	1	3	0	-1	0	4	1	11	9	2	-1	0	-0	-2	-1	21	7	-1	-0	-1	-1	65	-1	0	40	12	5	29	164	124	NOA
EXC	-0	0	-1	2	1	19	2	12	5	103	1	1	2	1	2	19	28	16	1	1	-0	3	4	5	-0	6	1	4	407	135	EXC
EU	-2	-0	-3	13	3	60	12	37	11	9	2	3	7	-3	-3	0	17	-3	6	5	-3	10	17	-3	-1	13	5	4	595	573	EU
	ME	MK	MT	NL	NO	PL	ΡT	RO	RS	RUE	SE	SI	SK	ТJ	ТМ	TR	UA	UZ	ATL	BAS	BLS	MED	NOS	AST	NOA	BIC	DMS	VOL	EXC	EU	